Math, asked by rajveer382, 8 months ago

An isosceles A has perimeter 30cm and each
of the equal sides is 12 cm. Find the area of triangle​

Answers

Answered by Blossomfairy
13

Given :

  • Perimeter is 30 cm
  • Two side is 12 cm

To find :

  • Area of triangle

According to the question,

Let the third side be x

→ 12 + 12 + x = 30

→ 24 + x = 30

→ x = 30 - 24

.°. x = 6 cm

Now we will use Heron's Formula,

\sf{s =  \frac{a + b + c}{2} }

\sf{s =  \frac{12 + 12 + 6}{2} }

\implies\sf{  \cancel\frac{30}{2}  = 15 \: cm} \green \bigstar

\implies\sf{ \sqrt{s(s - a)(s - b)(s - c)} }

\implies\sf{ \sqrt{15(15 - 12)(15 - 12)(1 - 6)} }

\implies\sf{ \sqrt{15 (3)(3)(9)} }

\implies\sf{ \sqrt{3 \times 5 \times 3 \times 3 \times 3 \times 3} }

\implies\sf{ 3 \times 3\sqrt{15} }

\therefore\sf{ 9\sqrt{15} \:  {cm}^{3}  }  \green\bigstar

More details :-

The formula given by Heron about the area of a triangle,is also known as Hero's formula. It is stated as :

\sf\:Area\:of\:triangle={ \sqrt{s(s - a)(s - b)(s - c)} }

where a,b and c are the sides of the triangle, and s = semi - perimeter. [ half the perimeter of the triangle \sf{s =  \frac{a + b + c}{2} }

Answered by EnchantedGirl
8

Given :-

\\

  • An isosceles A has perimeter 30cm and each of the equal sides is 12 cm.

\\

To find:-

\\

  • Find the area of triangle.

\\

SOLUTION:-

\\

Let the third side be x

\\

➝ 12 + 12 + x = 30

➝ 24 + x = 30

➝ x = 30 - 24

➜ x = 6 cm.

\\

We know ,

\\

Heron's formula :

\\

\sf \pink{\boxed{✯Area = \sqrt{s(s - a)(s - b)(s - c)}}}

\\

Where,

\\

\sf ☆ \orange{s = \frac{a + b + c}{2} }

\\

And , a,b,c are sides of triangle

& s= semi-perimeter

\\

\implies \sf{s = \frac{12 + 12 + 6}{2} }

\\

\implies\sf{ \cancel\frac{30}{2} = 15 \: cm}

\\

\implies\sf{ \sqrt{s(s - a)(s - b)(s - c)} }\\ \\ \\ </p><p>	\implies\sf{ \sqrt{15(15 - 12)(15 - 12)(1 - 6)} }\\ \\ </p><p>\implies\sf{ \sqrt{15 (3)(3)(9)} }\\ \\ \\ </p><p>	\implies\sf{ \sqrt{3 \times 5 \times 3 \times 3 \times 3 \times 3} }\\ \\ \\ </p><p>	\implies\sf{ 3 \times 3\sqrt{15} }

\\

\therefore \sf \boxed{\pink{ 9\sqrt{15} \: {cm}^{3} }}

\\

____________________________________

Similar questions