An isosceles right triangle has an area of 12cm² .find the length of its hypotenuse
Answers
Both the perpendicular and base are equal in length.
So Area of triangle = 1/2 x b x h
Let b = h = y
1/2 x y x y = 12
y² = 24
y = √24
y = 2√6 cm
So Perpendicular = Base = 2√6 cm
Now by Pythagoras theorem,
(2√6)² + (2√6)²
=> √ 24 + 24
=> √48
=> 4√3 cm
So required hypotenuse = .
Isosceles right triangle
⇒ The base and the height have equal length
..............................................................................................................................
STEP 1: Define x:
Let the base = x
∴ the height = x
...............................................................................................................................
STEP 2: Find x:
Area of triangle = 1/2 x base x height
Given that area = 12cm², find x
1/2 (x) (x) = 12
x² = 24
x = √24
...............................................................................................................................
STEP 3: Find hypotenuse:
We found that the length and height = √24
Use Pythagoras' Theorem, a² + b² = c², to find c
(√24)² + (√24)² = c²
c² = 24 + 24
c² = 48
c = √48
c = 6.93 cm
...............................................................................................................................
Answer: The length of the hypotenuse is 6.93 cm