Math, asked by Sruthi49, 7 months ago

An isosceles triangle has perimeter 18 cm and each of the equal sides is 5 cm. Find the area of the triangle

Answers

Answered by ramlips111
1

answer for the isosceles angle = 24

Answered by Anonymous
23

\color{red}\large\underline{\underline{Question:}}

\textsf{An isosceles triangle has perimeter 18 cm} \textsf{and each of the equal sides is 5 cm.} \textsf{Find the area of the triangle .}

______________________________________

\color{purple}\large\underline{\underline{To\:Find:}}

  • \mathtt{The\:area\:of\:the\:triangle}

______________________________________

\color{blue}\large\underline{\underline{Concept:}}

\textit{To find the area of triangle we should}\textit{first find the third side of the triangle}

______________________________________

\color{green}\large\underline{\underline{Taken:}}

  • \mathrm{Let\:the\:third\:side\:be\:x}

______________________________________

n

\color{lime}\large\underline{\underline{Given:}}

  • \mathtt{Perimeter = 18cm}
  • \mathtt{Equal\:sides = 6cm}

______________________________________

\color{magenta}\large\underline{\underline{We\:know:}}

\mathrm{For\:isosceles\:triangle}

  • \mathtt{Perimeter = Sum\:of\:it's\:sides}
  • \mathtt{Area = \dfrac{1}{2}b\sqrt{(a^{2} + \dfrac{b^{2}}{4})}}

______________________________________

\color{orange}\large\underline{\underline{Solution:}}

\mathrm{The\:third\:side}

\textit{From the Formula:}

Perimeter = Sum\:of\:it's\:sides

\mathtt{\Rightarrow 18 =  x + 5 + 5}

\mathtt{\Rightarrow 18 =  x + 10}

\mathtt{\Rightarrow 18 - 10 =  x}

\mathtt{\Rightarrow 8 =  x}

______________________________________

\mathtt{The\:area\:of\:the\:triangle}

\textit{From the Formula:}

\mathtt{Area = \dfrac{1}{2}b\sqrt{\left(a^{2} + \dfrac{b^{2}}{4}\right)}}

\Rightarrow Area = \dfrac{1}{2}\times 5 \times \sqrt{\left(8^{2} + \dfrac{</p><p>5^{2}}{4}\right)}

\Rightarrow Area = \dfrac{1}{2}\times 5 \times \sqrt{\left(64 + \dfrac{25}{4}\right)}

\Rightarrow Area = \dfrac{5}{2} \times \sqrt{\left(64 + \dfrac{25}{4}\right)}

\Rightarrow Area = \dfrac{5}{2} \times \sqrt{\left(\dfrac{256 + 25}{4}\right)}

\Rightarrow Area = \dfrac{5}{2} \times \sqrt{\left(\dfrac{281}{4}\right)}

\Rightarrow Area = \dfrac{5}{2} \times \left(\dfrac{\sqrt{281}}{2}\right)

\Rightarrow Area = \left(\dfrac{5\sqrt{281}}{4}\right)

{\boxed{\therefore Area = \left(\dfrac{5\sqrt{281}}{4}\right)}}

______________________________________

Similar questions