Math, asked by guddikumai9, 5 months ago

An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm . Find

the area of triangle.

Or

A triangular park

Answers

Answered by MoodyCloud
12
  • Area of triangle is 34.83 cm²(approx).

Step-by-step explanation:

Given:-

  • Perimeter of Isosceles triangle is 30 cm.
  • Measure of each of equal sides is 12 cm.

To find:-

  • Area of triangle.

Solution:-

Let, third side of triangle be x.

Perimeter of triangle = Sum of all sides

So,

 \longrightarrow 30 = 12 + 12 + x

 \longrightarrow 30 = 24 + x

 \longrightarrow 30 - 24 = x

 \longrightarrow x = 6

Measure of third side of triangle is 6 cm.

Now,

Here, We will use Heron's formula for finding area of triangle because height of triangle is not given.

Heron's formula is :-

Area of triangle = s(s - a)(s - b)(s - c)

Where,

  • s is semi-perimeter of triangle.
  • a, b and c are sides of triangle.

So,

Semi- Perimeter = Perimeter of triangle/2

 \longrightarrow s = 30/2

 \longrightarrow s = 15

Semi-perimeter is 15 cm

Then,

 \longrightarrow Area of triangle = √15(15 - 12)(15 - 12)(15 - 6)

 \longrightarrow Area of triangle = √15 × 3 × 3 × 9

 \longrightarrow Area of triangle = √5 × 3 × 3 × 3 × 3×3

 \longrightarrow Area of triangle = 3 × 3 × √3 × 5

 \longrightarrow Area of triangle = 9 × √15

 \longrightarrow Area of triangle = 9 × 3.87

 \longrightarrow Area of triangle = 34.83

Therefore,

Area of triangle is 34.83 cm²(approx).

Answered by 360Degree
6

ɢɪᴠᴇɴ:–

  • Perimeter of the isosceles triangle = 30 cm
  • Length of the equal sides = 12 cm

ᴛᴏ ғɪɴᴅ:

  • The area of the triangle.

sᴏʟᴜᴛɪᴏɴ:–

Let:

  \qquad \bull \:  \sf{The \: base \: angle=\bf{x} ^{ \circ} }

  \large\underbrace {\bf{We \: know \: that:-}}

  \qquad \bull \:  \sf{The  \: sum \: of \: the\: sides \: of \: the  \: \triangle= \bf{30°}}

  \qquad \bull \:  \sf{12 + 12 + x = 30}

  {:}  \implies \sf{24  + x  = 30}

   \\

  {:}  \implies \sf{ x  = 30 - 24}

   \\

  {:}  \implies  \boxed{\sf{ x  = 6}}

  \qquad \therefore\:  \sf{The   \: base \: angle \: of \: the \: isosceles \: triangle= \underline {\underline {\bf{6°}}} } \\

~ Using Heron's formula:–

  \large\underbrace {\bf{First \: condition:-}} \:

  \qquad \bull \:  \sf{s =  \dfrac{1}{2} \bigg \lgroup{a + b + c \bigg \rgroup} }

Where:-

  • a = 12 cm
  • b = 12 cm
  • c = 156 cm
  • s = semicircle

  \qquad \bull \:  \sf{s =  \dfrac{1}{2} \bigg \lgroup{12+ 12 + 6 \bigg \rgroup} }

  {:}  \implies \sf{s =  \dfrac{1}{2}  \times 30}

   \\

  {:}  \implies \sf{s =  \cancel \dfrac{30}{2}  }

   \\

  {:}  \implies  \boxed{\sf{s = 15}  }

  \large\underbrace {\bf{Second \: condition:-}}\:

  \qquad \bull \:  \sf{Area  = \sqrt{s\bigg(s - a \bigg) \bigg(s - b \bigg) \bigg(s - c \bigg)}}

  \qquad \bull \:  \sf{Area  = \sqrt{15\bigg(15 -  12\bigg) \bigg(15 - 12 \bigg) \bigg(15- 6 \bigg)}}

  {:}  \implies \sf{Area  =  \sqrt{15 \times 3 \times 3 \times  9} } \\

  \\

  {:}  \implies \sf{Area  =  \sqrt{1215}}

 \\

  {:}  \implies \boxed {\sf{Area  =  34.8568501}}

  \qquad \therefore\:  \sf{The   \: area \: of \: the \: isosceles \: triangle= \underline {\underline {\bf{34.8568501°(approx \: value)}}} } \\


Anonymous: Awesome!
Similar questions