Math, asked by azar4975, 6 months ago

An isosceles triangle has perimeter 30 cm and the base of the triangle is 6cm. Find the area of the triangle by heron's formula

Answers

Answered by pmd29
1

in an isosceles triangle 2 sides are equal.

let the 2 side those are equal be x

base = 6cm........given

let base be y

perimeter = sum of all sides

60 = x+x+y

60 = 2x+6

60-6 = 2x

58 = 2x

58/2 = x

x = 29cm

 {s}^{1}  = 6 \\  {s}^{2}  = 29 \\  {s}^{3}  = 29 \\  \\ semi \: perimeter \:  =  \frac{60}{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 30 \\  \\ s = 30 \\ area =  \sqrt{s \times (s -  {s}^{1}) \times (s -  {s}^{2} )  \times (s -  {s}^{3} }  \\ area =  \sqrt{s \times (30 - 6) \times (30-  29)  \times (30 \: -  29) }  \\ area =  \sqrt{30  \times 24 \times 1 \times 1}  \\ area =  \sqrt{720}  \\ area =  \sqrt{2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5}  \\ area =  2 \times 2 \times 3\sqrt{5}  \\ area = 12 \sqrt{5}  \:  \:  {cm}^{2}

mark my answer brainlist

Similar questions