Math, asked by divyanshin360, 7 months ago

An isosceles triangle has perimeter 30cm and each of its equal sides is 12cm . Find its area (use √15 =3.88)​

Answers

Answered by TheVenomGirl
23

\huge\frak{AnswEr :}

Given Parameters :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Perimeter = 30 cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Length of equal sides = 12cm

⠀⠀⠀⠀⠀⠀⠀⠀⠀

Let us assume that the third side of isosceles triangle be x cm.

⠀⠀⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf \bigstar \:  According  \: to \:  the  \: question :}} \\  \\

\implies\sf \:x + 12 + 12 = 30 \\ \\  \\  \implies\sf \:x + 24 = 30 \\ \\  \\  \implies\sf \:x = 30 - 24 \\ \\  \\  \implies \large{ \boxed{\frak{ \purple{ \:x = 6}}}} \\  \\

⠀__________________________

Now,

⠀⠀⠀⠀⠀⠀⠀⠀⠀

By using Heron's formula :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\sf \:  s = \dfrac{a + b + c}{2} \\  \\  \\ \implies\sf \: s =  \dfrac{Perimeter}{2}  \\  \\  \\  \implies\sf \: s = \frac{30}{2} \\  \\  \\ \implies \large{ \boxed{ \frak{\pink{\: s = 15}}}} \\  \\

⠀__________________________

We know that,

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\sf  \: Area  \: of \:  \triangle =  \sqrt{s(s - a)(s - b)(s - c)}  \\  \\  \\

Substituting the values :

⠀⠀⠀⠀⠀⠀⠀⠀⠀

\implies\sf  \: Area  \: of \:  \triangle =  \sqrt{15(15 - a)(15 - b)(15 - c)} \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle =\sqrt{15(15 - 12)(15 - 12)(15 - 6)} \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle =  \sqrt{15 \times 3 \times 3 \times 9}  \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle = 3 \times 3 \times  \sqrt{15}  \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle = 9 \times \sqrt{15} \\  \\  \\ \implies\sf  \: Area  \: of \:  \triangle = 9 \times 3.88 \\  \\  \\ \implies \large{ \boxed{ \frak{\blue{ \: Area  \: of \:  \triangle = 34.92 \: cm {}^{2} }}}} \\  \\

\therefore \: {\underline{\sf{ Area \: of  \: the  \: isosceles \: \triangle  \: is  \:  \bf \: 34.92 cm{}^{2}. }}} \\

Answered by Unacademy
7

\sf{\bold{\purple{\star{\underline{\underline{Given}}}}}}

  • Perimeter = 30cm
  • equal sides = 12cm

⠀⠀⠀⠀

\sf{\bold{\purple{\star{\underline{\underline{To\: Find }}}}}}

⠀⠀⠀⠀

  • Area = ??

⠀⠀⠀⠀

\sf{\bold{\purple{\star{\underline{\underline{Solution}}}}}}

⠀⠀⠀⠀

  • let the unknown side be x

⠀⠀⠀⠀

\sf{\star{\boxed{\orange{\frak{ Perimeter = sum \: of \: all \: sides }}}}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ 30 = 12 + 12 + x }}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ 30 = 24 + x }}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ x = 30 - 24}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ x = 6 }}

⠀⠀⠀⠀

  • All the sides of the triangle are 6cm , 12cm and 12cm

⠀⠀

\sf{\star{\boxed{\orange{\frak{ Semi\: perimeter = \dfrac{perimeter}{2} }}}}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ Semi perimeter = \dfrac{30}{2}}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ Semi\: perimeter = 15cm }}

⠀⠀⠀⠀

\sf{\star{\boxed{\orange{\frak{ Area = \sqrt{s(s-a)(s-b)(s-c)} }}}}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ Area = \sqrt{ 15 ( 15 - 12 ) ( 15 - 12 )( 15 - 6) }}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ Area = \sqrt{15\times 3\times 3 \times 9}}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ Area = \sqrt{15\times 3\times 3 \times 3\times 3 }}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ Area = 9 \sqrt{15}}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ Area = 9\times 3.88}}

⠀⠀⠀⠀

\sf : \implies\:{\frak{ Area = 34.92cm^2}}

⠀⠀⠀⠀

⠀⠀⠀⠀

⠀⠀⠀⠀

\sf{\star{\boxed{\green{\frak{ Area = 34.92cm^2 }}}}}

⠀⠀⠀⠀

⠀⠀⠀

Similar questions