Math, asked by kitty3299, 8 months ago

an isosceles triangle has perimeter 30cm and each of the equal side is 12cm . find the area of the triangle​

Answers

Answered by srishtisingh472
1

Answer:

40.25cm2...........................

Answered by amankumaraman11
4

Given,

  • Perimeter of isosceles triangle = 30 cm
  • Measure of equal side of the ∆ = 12 cm

To find : Area of triangle

Here,

→ Sum of all side of the ∆ = Perimeter of ∆

→ Sum of equal sides & unequal side = Perimeter of isosceles ∆

So, Let the unequal side of ∆ be x

Then,

 \to \rm{}12 + 12 + x = 30 \\ \to \rm  \:  \:  \:  \:  \:  \:  \: 24 + x = 30  \\ \to \rm \:  \:  \:  \:  \:  \:  \: x = 30 - 24 \\  \to \rm \:  \:  \:  \:  \:  \:  \: x =  \green6 \: cm

Now, Applying Heron's Formula, we get,

 \rm  \sqrt{ \frac{perimeter}{2}   \bigg\{  \frac{perimeter}{2} - a \bigg\} \bigg\{  \frac{perimeter}{2} - b \bigg\} \bigg\{  \frac{perimeter}{2} - c \bigg\} }  \\  \\  \\  \\  \to \tt{ \sqrt{ \frac{30}{2}  \bigg\{  \frac{30}{2}  - 12 \bigg\} \bigg\{   \frac{30}{2} - 12 \bigg\}\bigg\{  \frac{30}{2} - 6  \bigg\}} } \\  \\  \\  \to \tt \sqrt{15(15 - 12)(15 - 12)(15 - 6)}  \\   \to \tt \sqrt{15 \times 3 \times 3 \times 9}  \\   \to \tt \sqrt{3 \times 5 \times 3 \times 3 \times 3 \times 3  }  \\   \to \tt9 \sqrt{3 \times 5}  \\   \to \tt \red{9 \sqrt{15} } \:  \:  \rm {cm}^{2}

Hence,

  • Area of isosceles triangle = 9√15 cm²
Similar questions