Math, asked by manas5912, 7 months ago

An isosceles triangle has perimeter 50 cm and each of the equal sides is 15 cm. Find the area

of the triangle​

Answers

Answered by Anonymous
4

Answer:

Isosceles triangle

Solve for area

A≈118.59cm²

b Base

15

cm

P Perimeter

50

cm

Using the formulas

A=bhb

2

P=2a+b

hb=a2﹣b2

4

Solving forA

A=1

4bP(P﹣2b)=1

4·15·50·(50﹣2·15)≈118.58541cm²

Answered by Anonymous
8

Step-by-step explanation:

\setlength{\unitlength}{20mm}\begin{picture}(16,4)\thicklines\put(8.8,3){\large\sf{A}}\put(7.8,1){\large\sf{B}}\put(10.03,1){\large\sf{C}}\put(8,1){\line(1,0){2}}\put(8,1){\line(1,2){1}}\put(10,1){\line(-1,2){1}}\put(9.6,1.9){\sf{\large{15 cm}}}\put(7.8,1.9){\sf{\large{15 cm}}}\put(8.8,0.8){\sf{\large{? cm}}}\end{picture}

Each Equal Sides = 15 cm

Perimeter of Triangle = 50 cm

\underline{\bigstar\:\textsf{According to the given Question :}}

:\implies\sf Perimeter=Sum\:of\:all\:Sides\\\\\\:\implies\sf Perimeter=AB+AC+BC\\\\\\:\implies\sf 50\:cm=15\:cm+15\:cm+BC\\\\\\:\implies\sf 50\:cm=30\:cm+BC\\\\\\:\implies\sf 50\:cm-30\:cm=BC\\\\\\:\implies\underline{\boxed{\sf BC=20\:cm}}

\therefore\:\underline{\textsf{Third Side of Isosceles Triangle is \textbf{20 cm}}}.

Similar questions