Math, asked by Anonymous, 20 days ago

An isosceles triangle has the perimeter 30 cm and each of the equal sides is 12 cm. Find its area.​

Answers

Answered by Anonymous
41

 \large {\dag \; {\underline{\underline{\orange{\pmb{\sf{ \; Given \; :- }}}}}}}

  • Equal sides of the Triangle = 12 cm
  • Perimeter of the Triangle = 30 cm

 \\ \\

 \large {\dag \; {\underline{\underline{\color{darkblue}{\pmb{\sf{ \; To \; Find \; :- }}}}}}}

  • Area of the Triangle = ?

 \\ \\

 \large {\dag \; {\underline{\underline{\pink{\pmb{\sf{ \; Solution \; :- }}}}}}}

Formula Used :

  •  {\underline{\boxed{\red{\sf{ S = \dfrac{ a + b + c}{2} }}}}}

  •  {\underline{\boxed{\red{\sf{ Perimeter = a + b + c }}}}}

  •  {\underline{\boxed{\red{\sf{ Area = \sqrt{s (s - a)(s - b)(s - c)} }}}}}

Where :

  • ➟ s = Semi - Perimeter
  • ➟ a = Side 1
  • ➟ b = Side 2
  • ➟ c = Side 3

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the 3rd Side :

 {\longmapsto{\qquad{\sf{ Perimeter = a + b + c }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 30 = 12 + 12 + c }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 30 = 24 + c }}}} \\ \\ \\ \ {\longmapsto{\qquad{\sf{ 30 - 24 = c }}}} \\ \\ \\ \ {\qquad \; {\therefore \; {\underline{\boxed{\color{maroon}{\pmb{\frak{ 3rd \; Side = 6 \; cm }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the Semi - Perimeter :

 {\implies{\qquad{\sf{ S = \dfrac{a + b + c}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ S = \dfrac{12 + 12 + 6}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ S = \dfrac{30}{2} }}}} \\ \\ \\ \ {\implies{\qquad{\sf{ S = \cancel\dfrac{30}{2} }}}} \\ \\ \\ \ {\qquad \; {\therefore \; {\underline{\boxed{\orange{\pmb{\frak{ Semi - Perimeter = 15 \; cm }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Calculating the Area :

 {\dashrightarrow{\qquad{\sf{ Area = \sqrt{s (s - a)(s - b)(s - c)} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{15 (15 - 12)(15 - 12)(15 - 6)} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{15 \times 3 \times 3 \times 9} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = \sqrt{3 \times 5 \times 3 \times 3 \times 3 \times 3} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = 3 \times 3 \times \sqrt{3} \times \sqrt{5} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ Area = 9 \times \sqrt{15} }}}} \\ \\ \\ \ {\qquad \; {\therefore \; {\underline{\boxed{\purple{\pmb{\frak{ Area = 9 \sqrt{15} \; {cm}^{2} }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

Therefore :

❛❛ Area of the given Triangle is 915 cm² . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by Anonymous
13

Step-by-step explanation:

Given

The perimeter of an isosceles triangle is 30 cm

The length of the sides which are equal is12 cm.

Let the third side length be 'a cm'.

Then,

⇒30=12+12+x

⇒30=24+x

⇒24+x=30

⇒x=30−24

⇒ x = 6

 \boxed{  \red{\pmb{So, \: the \:  length \:  of  \: the \:  third  \: side  \: is  \: 6 cm.}}}

Thus,the semi perimeter of the isosceles triangle (s) = 30/2 cm =15 cm

By using Heron's Formula,

Area of the triangle,

\bf= \sqrt{s(s - a)(s - b)(s - c)} \\  \bf= \sqrt{15(15 - 12)(15 - 12)(15 - 6)} \: {cm}^{2} \\  \bf= \sqrt{15 \times 3 \times 3 \times 9} \: {cm}^{2} \\  \bf= 9 \sqrt{15} \: {cm}^{2}

 \boxed{ \red{ \pmb{Hence, \:  the  \: area \:  of \:  the \:  triangle  \: is \:  9  \sqrt 15 cm^ 2 .}}}

Similar questions