Math, asked by manavdama11, 5 hours ago

An isosceles triangle LMN is inscribed in a circle where LM=LN= 40 cm and MN=48 cm. Find the radius of the circle.

Answers

Answered by MysticSohamS
2

Answer:

hey here is your answer

pls mark it as brainliest

refer the reference diagram uploaded above

Step-by-step explanation:

so \: let \: the \: centre \: of \: circle \: in \: which \: isosceles \: triangle \: LMN \: is \: inscribed \: be \: O

now \: for \: isosceles \: triangle \: LMN \\ LM = LN = 40 \: cm \\ MN = 48 \: cm

so \: here \: MO \: is \: radius \: of \: adjoining \: circle \\ so \: as \: isosceles \: triangle \: LMN \: is \: inscribed \: in \: this \: circle \\ we \: can \: say \: that \: the \: given \: circle \: circumscribes \: triangle \: LMN \: and \: thus \: MO \: can \: be \: called \: as \: circumradius

so \: circumradius \: is \: calculated \: using \: given \: formula \\ ie \: circumradius = abc \div  \sqrt{(a + b + c)(a - b + c)(a + b  - c)(b + c - a)}  \\ wherein \: a \: b \: and \: c \: are \: sides \: of \: inscribed \: triangle

so \: hence \: using \:  \\ MO = LM \times LN \times MN \div   \sqrt{ \:(LM  + MN +LN)(LM - MN +LN)( LM +MN -LN)(MN +LN -  LM)}  \\  = 48 \times 40 \times 40 \div  \sqrt{(40  + 40 + 48)(40 - 48 + 40)(40 - 40 + 48)(40 + 48 - 40)}  \\  = 1600 \times 48 \div  \sqrt{(128 \times 32 \times 48 \times 48)}  \\  = 1600 \times 48 \div 48 \times 8 \sqrt{2} \times 4 \sqrt{2}  \\  = 1600 \div 8 \times 4 \times 2 \\  = 1600 \div 64 \\  thus \: MO = 25.cm

hence \: radius \: of \: circle \: is \: 25.cm

Attachments:
Similar questions