Math, asked by sonibharti452, 1 year ago

An isosceles triangle pqr, in which pq= pr= 8 cm, is inscribed in a circle of radius 10 cm , find the area of the triangle

Answers

Answered by amitnrw
0

Area of triangle =   23.46 cm²

Step-by-step explanation:

Area of triangle =  (PQ * PR  * Sin ∠P  )/2

= (8 * 8 * Sin ∠P  )/2

= 32Sin ∠P

QR² = PQ² + PR² - 2PQ * PRCos∠P

=> QR² = 8² + 8² - 2*8²Cos∠P

=> QR² = 128(1 - Cos∠P)

QR² = QO² + RO² - 2 QO*ORCos∠QOR

∠QOR = 2∠P  ( angle subtended by chord QR at cneter & arc)

=> QR² = 10² + 10² - 2*10²Cos∠2P

=> QR² = 200 ( 1 - Cos∠2P)

128(1 - Cos∠P) = 200 ( 1 - Cos∠2P)

=> 16(1 - Cos∠P) = 25 ( 1 - Cos∠2P)

=> 16(1 - Cos∠P) = 25 (2 - 2Cos²∠P)

=> 8(1 - Cos∠P) = 25 (1 - Cos²∠P)

=> 25Cos²∠P - 8Cos∠P - 17 = 0

=> 25Cos²∠P - 25Cos∠P + 17Cos∠P - 17 = 0

=> 25Cos∠P(Cos∠P - 1) + 17(Cos∠P - 1) = 0

=> Cos∠P = 1  or Cos∠P = -17/25

Cos∠P = 1 is not possible  as angle would be zero

Cos∠P = -17/25

Sin²∠P = 1  - Cos²∠P

Sin∠P = 0.733

Area of triangle =   32Sin ∠P = 23.46 cm²

Learn more:

An equilateral triangle is inscribed in a circle of radius 7 cm. Find the ...

https://brainly.in/question/10153152

a circle with Centre P is inscribed in a triangle ABC side a b side BC ...

https://brainly.in/question/8756941

Attachments:
Similar questions