Math, asked by Anonymous, 9 hours ago

An n digit  positive number with exactly n digits. Nine hundred distinct n-digit numbers are to be formed using only the three digits 2, 5 and 7. The smallest value of n for which this is possible, is

(a) 6

(b) 7

(c) 8

(d) 9​

Answers

Answered by swaransingh49957
2

Answer:

Using 2,5 and 7 with repetition each place of n digit number can be chosen in 3 ways.

Hence, total number of n−digit numbers =3×3×3...n times =3

n

.

According to given condition 3

n

≥900⇒3

n−2

≥100

∴n−2≥5⇒n≥7

Answer is 7.

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that,

An n digit  positive number with exactly n digits. Nine hundred distinct n-digit numbers are to be formed using only the three digits 2, 5 and 7.

Since, we have to formed n digit number, so it means there are n places to fill the given three digits 2, 5 and 7.

So, it means,

 \purple{\rm :\longmapsto\: {1}^{st} \: place \: can \: be \: filled \: in \: three \: ways}

 \purple{\rm :\longmapsto\: {2}^{nd} \: place \: can \: be \: filled \: in \: three \: ways}

 \purple{\rm :\longmapsto\: {3}^{rd} \: place \: can \: be \: filled \: in \: three \: ways}

.

.

.

.

.

 \purple{\rm :\longmapsto\: {n}^{th} \: place \: can \: be \: filled \: in \: three \: ways}

So, total number of ways in which n digit number can be formed with the help of the digits 2, 5 and 7 is

\rm \:  =  \:  \underbrace{3 \times 3 \times 3 \times 3 \times  -  -  -  \times 3} \\  \:  \:  \:  \:  \:  \:  \:  \: n \: times

\rm \:  =  \:  {3}^{n}

Now, According to statement,

\rm :\longmapsto\: {3}^{n} \geqslant 900

\rm :\longmapsto\: {3}^{n} \geqslant 9 \times 100

\rm :\longmapsto\: {3}^{n} \geqslant  {3}^{2}  \times 100

\rm :\longmapsto\:  \dfrac{ {3}^{n} }{ {3}^{2} }  \geqslant  100

\rm :\longmapsto\:   {3}^{n - 2} \geqslant 100

So, using hit and trial method,

 \purple{\rm :\longmapsto\: {3}^{4} = 81 \:  \:  \: and \:  \:  \:  {3}^{5} = 243}

So, it implies

\rm :\longmapsto\:n - 2 \geqslant 5

\rm :\longmapsto\:n \geqslant 5 + 2

\rm\implies \:n \geqslant 7

Hence,

  • The smallest value of n is 7

So,

  • Option (b) is correct.
Similar questions