Physics, asked by nivi0819, 1 month ago

An object 0.1 m tall is placed 0.4 m from a convex mirror with a focal length of 0.3 m. What is the height
of the image?​

Answers

Answered by BrainlyTwinklingstar
40

Given :

In convex mirror,

Object height : 0.1 m

Object distance : 0.4 m

Focal length : 0.3 m

To find :

The height of the image.

Solution :

First we have to find the image distance, using mirror formula that is,

» A formula which gives the relationship between image distance, object distance and focal length of a sperical mirror is known as the mirror formula .i.e.,

\boxed{\bf \dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}}

where,

  • v denotes Image distance
  • u denotes object distance
  • f denotes focal length

By substituting all the given values in the formula,

\dashrightarrow\sf \dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}

\dashrightarrow\sf \dfrac{1}{v} + \dfrac{1}{ - 0.4} = \dfrac{1}{0.3}

\dashrightarrow\sf \dfrac{1}{v} -  \dfrac{1}{ 0.4} = \dfrac{1}{0.3}

\dashrightarrow\sf \dfrac{1}{v} = \dfrac{1}{0.3} + \dfrac{1}{ 0.4}

\dashrightarrow\sf \dfrac{1}{v} = \dfrac{4 + 3}{1.2}

\dashrightarrow\sf \dfrac{1}{v} = \dfrac{7}{1.2}

\dashrightarrow\sf v=  \dfrac{1.2}{7}

\dashrightarrow\sf v= 0.1 \: m

Now,

we know that,

» The linear magnification produced by a mirror is equal to the ratio of the image distance to the object distance with a minus sign and it is equal to the ratio of image height and object height. that is,

\boxed{\bf \dfrac{h'}{h} = - \dfrac{v}{u}}

where,

  • h' denotes height of the image
  • h denotes height of the object
  • v denotes image distance
  • u denotes object distance

By substituting all the given values in the formula,

\dashrightarrow\sf \dfrac{h'}{h} = - \dfrac{v}{u}

\dashrightarrow\sf \dfrac{h'}{0.1} = - \dfrac{0.1}{ - 0.4}

\dashrightarrow\sf h' =  \dfrac{0.01}{0.4}

\dashrightarrow\sf h' =  0.025 \: m

Thus, the height of the image is 0.025 m.

Answered by NewGeneEinstein
0

Answer:-

  • Object height=0.1m=h
  • Object distance=-0.4m=u
  • Focal length=f=0.3m
  • Image distance=v=?
  • Image height=h'=?

We know

\boxed{\sf \dfrac{1}{v}+\dfrac{1}{u}=\dfrac{1}{f}}

\\ \sf\hookrightarrow \dfrac{1}{v}=\dfrac{1}{f}-\dfrac{1}{u}

\\ \sf\hookrightarrow \dfrac{1}{v}=\dfrac{1}{0.3}-\dfrac{1}{-0.4}

\\ \sf\hookrightarrow \dfrac{1}{v}=\dfrac{1}{0.3}+\dfrac{1}{0.4}

\\ \sf\hookrightarrow \dfrac{1}{v}=\dfrac{4+3}{1.2}

\\ \sf\hookrightarrow \dfrac{1}{v}=\dfrac{7}{1.2}

\\ \sf\hookrightarrow v=\dfrac{1.2}{7}

\\ \sf\hookrightarrow v=0.1m

Now.

\boxed{\sf Magnification=\dfrac{h'}{h}=-\dfrac{v}{v}}

\\ \sf\hookrightarrow \dfrac{h'}{0.1}=-\dfrac{0.1}{-0.4}

\\ \sf\hookrightarrow \dfrac{h'}{0.1}=\dfrac{0.1}{0.4}

\\ \sf\hookrightarrow h'=\dfrac{0.01}{0.4}

\\ \sf\hookrightarrow h'=0.025

Similar questions