Physics, asked by adhithm8, 8 months ago

An object 2 cm high is placed at a distance of 16 cm from a concave mirror which produces a 5]

real image 3 cm high.

(iFind the position of the image.

i)What is the focal length of mirror?​

Answers

Answered by santoshthalla143
3

Explanation:

Do like this problem

Please follow me

Attachments:
Answered by Anonymous
39

GIVEN :-

 \textsf{ •Object height ,h=+2 </u></strong><strong><u>cm} \\

 \textsf{•Image height ,h'=-3 cm (real image hence inverted)} \\

 \textsf{•Object distance,u=-16cm } \\

TO FIND OUT:-

\green{\textsf{•Position of the image (v)=?}}

</u><u>\</u><u>purple</u><u>{</u><u> \textsf{•Focal length of the image (f)=?}</u><u>}</u><u> \\  \\

SOLUTION:-

\green{\textsf{Finding Position of the image (v)}}

 \textsf{•From the expression for magnification } \\

 \: \implies \bf  m= \frac{h'}{h}  =  -  \frac{v}{u}  \\  \\

 \implies  \bf \: v =   - u×\frac{h'}{h}  \\  \\

 \implies \bf v=-(-16)× \frac{(3)}{2}  \\  \\

 \bf \implies \: v =  - 24 \: cm \\  \\

The image is formed at distance of 24 cm in front of the mirror (negative sign means object and image are on the same side)

\purple{ \textsf{Finding Focal length of the image (f)}} \\  \\

 \textsf{•Using mirror formula,} \\

 \bf \:  \:  \:  \frac{1}{f}  =  \frac{1}{u}  +  \frac{1}{v}  \\  \\

 \textsf{•Putting the value ,we get} \\

 \bf  \implies \frac{1}{f}  =  \frac{ \: 1}{ - 16}  +  \frac{ \: 1}{ - 24}  \\  \\

 \bf \implies \frac{1}{f}  =   - \frac{3 + 2}{48}  = -   \frac{5}{48}  \\  \\

 \bf \implies \: f = -   \frac{48 }{5}  =  - 9.6 \: cm \\  \\

Similar questions