Math, asked by kalaiarasan6923, 1 year ago

an object 2 cm in size is placed at 3 cm in front of a concave mirror of focal length 15 centimetres at what distance from mirror should the screen be placed in order to obtain a sharp image find the nature and size of the image

Answers

Answered by Anonymous
32
\bf {\huge {\bold{SOLUTION:-}}}


\bf{Given:-}

Height of Object (ho)= 2 cm

Object distance (u) = - 3 cm

Focal Length (f) = -15

Here, Using Lens Formula!

Note: Lens Formula shows that Relationship between object, image Distance and focal length of the mirror.

Lens Formula:
 \bf{ \huge{ \fbox{ \mathsf {  \frac{1}{f}  =  \frac{1}{v}  +  \frac{1}{u}}}}}

Now, Substitute the Given value in Lens Formula So, We get!



\bf{ \huge{ \fbox{ \mathsf {  \frac{1}{ - 15}  =  \frac{1}{v}  +  \frac{1}{ - 3}}}}} \\  \\  \\ \bf{ \huge{ \fbox{ \mathsf {  \frac{1}{ - 15}   +  \frac{1}{3} =  \frac{1}{v}}}}} \\  \\   \mathsf{ \bf{ \fbox{ \huge{ \frac{1}{v}  =  \frac{   - 1 + 5}{ 15}}}}} \\ \\  \\  \mathsf{ \bf{ \fbox{ \huge{ \frac{1}{v}  =  \frac{ 4}{ 15}}}}} \\  \\ \mathsf{ \bf{ \fbox{ \huge{v =  \frac{15}{4}}}}} \\  \\  \\ \mathsf{ \bf{ \fbox{ \fbox{ \huge{v = 3.75cm}}}}}


Now, Using Magnification Formula!

 \mathsf{ \huge{ \bf{ \fbox{m =  \frac{ {h}^{<br />`} }{ho}  =  \frac{ - v}{u}}}}}

Now, Substitute the Given value in Magnification!


\mathsf{ \huge{ \bf{ \fbox{ \frac{ {h}^{<br />} }{2}  =  \frac{ - 3.75}{ - 3 }}}}}  \\  \\  \\  \\  \mathsf{ \huge{ \bf{ \fbox{h =  \frac{7.5}{3}  \implies2.5}}}}


\bold{\fbox{Hence \: \: Size \: \: of \: \: Image \: =2.5cm}}



Conclusion:


The Image formed virtual and erect and behind the mirror at 2.5 cm.

kalaiarasan6923: thanks
sitmoumita2308pbwrj5: u r most wlcome:-)
abhiraj65: thanks for answer
Anonymous: Thank You sakshi
Similar questions