an object 3cm high produces a real image 4.5cm high, when placed at a distance of 20cm from a concave mirror. Calculate: (i) the position of image (ii) focal length of the concave mirror
Answers
Answer:
Object height h1=3cm
image height h2=4.5cm
we know
m=h2/h1=-v/u
so,
4.5/3=-v /-20 (object distance =20)
4.5×-20/3=-v
v=30cm
so image is 30 cm from the mirror.
now , using mirror formula
1/u+1/v=1/f
1/-20+1/-30=1/f
-5/60=1/f
-1/12=1/f
f=-12
Hence , the required focal length is 12cm
Answer:
Height of the object = h = 3 cm
Height of the image = h' = -4.5 cm (Real and Inverted Image)
Object distance from the concave mirror = u = -20 cm
Image distance from the concave mirror = v = ?
Focal length of the concave mirror = f = ?
Firstly, Magnification = h'/h
⇒ m = -4.5/3
⇒ m = -1.5
Now, We also know that, m = -v/u
So, m = -1.5 = -v/(-20)
⇒ -1.5 = -v/-20
⇒ -v = -1.5 × -20
⇒ -v = 30
⇒ v = -30 cm
Now,
Mirror Formula = 1/u + 1/v = 1/f
⇒ 1/-20 + 1/-30 = 1/f
⇒ 1/f = (-30-20)/600
⇒ 1/f = -50/600
⇒ 1/f = -5/60
⇒ 1/f = -1/12
⇒ f = -12 cm
Hence,
- Image distance from the concave mirror = v = -30 cm
- Focal length of the concave mirror = f = -12 cm