Chemistry, asked by mohdarshan888, 8 months ago

An object 4.0 cm in length is placed at a distance of 10 cm in front of a convex

mirror of radius of curvature 20 cm. Find the position of the image, its nature

and size.​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
14

\huge\sf\pink{Answer}

☞ The image is erect, virtual and enlarged

☞ v = 5 & m = 0.5

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ Height of the object = 4 cm

✭ u = -10 cm

✭ Radius of curvature = 20 cm

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ Position, nature and size of the image?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

So first we shall find the Focal Length,

\sf Focal \ Length = \dfrac{20}{2}

\sf Focal \ Length = 10 \ cm

Now as per mirror formula,

\underline{\boxed{\sf \dfrac{1}{v}+\dfrac{1}{u} = \dfrac{1}{f}}}

Substituting the values,

\sf \dfrac{1}{v}+\dfrac{1}{u} = \dfrac{1}{f}

\sf \dfrac{1}{v}+\dfrac{1}{-10} = \dfrac{1}{10}

\sf \dfrac{1}{v}=\dfrac{1}{10}+\dfrac{1}{10}

\sf \dfrac{1}{v} = \dfrac{2}{10}

\sf \dfrac{1}{v} = \dfrac{1}{5}

\sf \green{v = 5}

Now magnification is given by,

\underline{\boxed{\sf M = \dfrac{H_i}{H_o}}}

Substituting the values,

\sf M = \dfrac{-v}{u}

\sf M = \dfrac{-5}{-10}

\sf M = \dfrac{1}{2}

\sf \red{Magnification = 0.5}

Now the height of the image will be,

»» \sf M = \dfrac{H_i}{H_o}

»» \sf 0.5 = \dfrac{H_i}{4}

»» \sf 0.5\times 4 = H_i

»» \sf \orange{H_i = 2}

━━━━━━━━━━━━━━━━━━

Similar questions