Physics, asked by jyotiringon41, 26 days ago

An object 4.5 cm high is placed at a distance of 12 cm from a concave lens of focal length 18 cm.find the size of the image.​

Answers

Answered by Radhaisback2434
2

Answer:

the answer is 50 size if the image...

Hope its help..

Answered by Anonymous
21

\tt \blue{ Solution:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{ \:Height \:  of \:  object(ho) = 4.5cm}

 \footnotesize \tt{ Distance  \: of \:  object(u) = 12cm}

 \footnotesize \tt{ Focal \:  length(f)= 18cm}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \hline \underline{\begin{array}{ ||c||c||   }  \underline {\footnotesize \tt{ In \:  Concave  \: lens }}& \underline{\footnotesize \tt{Value} }\\\footnotesize \tt{u }& \footnotesize \tt{negative \:  value}\\\footnotesize \tt{v}& \footnotesize \tt{negative \:  value}\\\footnotesize \tt{f}& \footnotesize \tt{negative \:  value}\end{array}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{ Formula \:  Used:- }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\tt{ \frac{1}{f} =  \frac{1}{v}   -  \frac{1}{u} }

\tt{ \frac{1}{ - 18} =  \frac{1}{v}   -  \frac{1}{ - 12} }

\tt{ \frac{1}{ - 18} =  \frac{1}{v}    +  \frac{1}{ 12} }

\tt{  - \frac{1}{ 18} -  \frac{1}{12}  =  \frac{1}{v}     }

\tt{ \frac{ - 2  \:  -  \: 3}{ 36}  =  \frac{1}{v}     }

\tt{ \frac{ - 5}{ 36}  =  \frac{1}{v}     }

 \footnotesize\tt{  - 5v  =  36    }

\footnotesize\boxed{ \underline{\tt{  Distance  \: of  \: Image(v)  =   \frac{ - 36}{5} }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{Magnification (m) \: } \tt{= \:  \frac{ v}{u} }

 \footnotesize \tt{Magnification (m) \: } \tt{= \:  \frac{  - 36}{5 \times ( - 12)} }

 \footnotesize \tt{Magnification (m) \: } \tt{= \:  \frac{   \cancel{- 36}}{5 \times  ( - \cancel {12})} }

\footnotesize\boxed{  \underline{\footnotesize \tt{Magnification (m) \: } \tt{= \:  \frac{  3}{5} }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \footnotesize \tt{Magnification (m) \: } \tt{= \:  \frac{ hi}{ho} }

 \footnotesize \tt{ \frac{3}{5}  \: } \tt{= \:  \frac{ hi}{4.5} }

 \footnotesize \tt{ 3 \times 4.5}\tt{ \: = 5hi }

 \footnotesize \tt{ 13.5}\tt{ \: = 5hi }

 \boxed{ \underline{ \footnotesize \tt{  2.7 }\tt{ \: = hi (Height \size \:  of \:  Object)}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \small\tt{ Important \:  tables:- }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \hline \underline{\begin{array}{ ||c||c||   }  \underline {\footnotesize \tt{ Image \: formed }}& \underline{\footnotesize \tt{Value} }\\\footnotesize \tt{Real \: and \: Inverted}& \footnotesize \tt{m = negative \:  value}\\\footnotesize \tt{Virtual \: and \:Erect}& \footnotesize \tt{m = positive \:  value}  \\\footnotesize \tt{Enlarged \: size}&\footnotesize \tt{m > 1 }\\\footnotesize \tt{Same \: size}&\footnotesize \tt{m = 1} \\\footnotesize \tt{Diminished  \: size}&\footnotesize \tt{m < 1 \:}\end{array}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \hline \underline{\begin{array}{ ||c||c||   }  \underline {\footnotesize \tt{ In \:  Concave  \: lens }}& \underline{\footnotesize \tt{Image \: formed} }\\\footnotesize \tt{v \:  =  \: positive \: value}& \footnotesize \tt{behind \: the \: lens}\\\footnotesize \tt{v =negative \: value }& \footnotesize \tt{ \: front \: of \: lens}\end{array}}

Similar questions