Physics, asked by tinahelen32, 10 months ago

An object 4cm high is place at distance of 27cm front of a convex lens of focal length 18cm. Find the position,nature and size of the image formed

Answers

Answered by ItzArchimedes
17

Given:

  • Distance = -27cm
  • Focal length = 18 cm
  • Height = 4 cm

To find:

  • Position of image
  • Size of image

Solution:

Firstly finding position

Using

- 1/u + 1/v = 1/f

Where

  • v : position of image = ?
  • u : Distance = -27
  • f : Focal length = 18

Substituting the values we have

→ 1/v + 1/-(-27) = 1/18

→ 1/v = 1/27 - 1/18

→ 1/v = 1/54

By cross multiplication

v = 54 cm

Hence , position of image = 54cm

Using magnification formula

h/h = v/u

Simplifying

h= v × h/u

Where

  • hᵢ : height of image = ?
  • hₒ : height of object = 4
  • v : position of image = 54
  • u : Distance = -27

substituting the values we have

♦ hᵢ = 54 × 4/-27

♦ hᵢ = -2 × 4

h= -8 cm

Hence, height of image = - 8cm

Answered by Anonymous
41

Given :

▪ Height of object = 4cm

▪ Distance of object = 27cm

▪ Focal length of lens = 18cm

▪ Type of lens : convex

To Find :

▪ Position, size and nature of image.

CalculatioN :

Position of image :

\implies\sf\:\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}\\ \\ \implies\sf\:\dfrac{1}{v}-\dfrac{1}{(-27)}=\dfrac{1}{18}\\ \\ \implies\sf\:\dfrac{1}{v}=\dfrac{1}{18}-\dfrac{1}{27}\\ \\ \implies\sf\:\dfrac{1}{v}=\dfrac{3-2}{54}\\ \\ \implies\underline{\boxed{\bf{\red{v=54\:cm}}}}\:\gray{\bigstar}

Size (Height) of image :

\Rightarrow\sf\:m=\dfrac{v}{u}=\dfrac{h_i}{h_o}\\ \\ \Rightarrow\sf\:m=\dfrac{54}{(-27)}=\dfrac{h_i}{h_o}\\ \\ \Rightarrow\sf\:m=-2=\dfrac{h_i}{4}\\ \\ \Rightarrow\underline{\boxed{\bf{\blue{h_i=-8\:cm}}}}\:\gray{\bigstar}

Nature of image :

  • Real
  • Inverted
  • Enlarged
Similar questions