Physics, asked by XxCelestialStarXx, 1 month ago

an object 5.0cm in length is placed at a distance of 20 cm in front of a convex mirror of radius of curvature 30 cm. find nature, position and size of image​

Answers

Answered by roychandidas61
1

Answer:

u = -20 cm, h= 5 cm. Image is virtual and erect and formed behind the mirror.

please mark me as brainliest

Answered by Anonymous
53

\footnotesize\tt{Focal  \: length = \frac{Radius \:  of  \: Curvature}{2}}

\footnotesize\tt{Focal  \: length = \frac{30}{2}}

\footnotesize\tt{Focal  \: length =  \cancel\frac{30}{2}}

\footnotesize\tt{Focal  \: length =  15cm}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bullet\footnotesize\tt \purple{ \: Given:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\tt{u = -20cm}

\footnotesize\tt{v = ?}

\footnotesize\tt{h1 = + 5 cm}

\footnotesize\tt{Convex  \: lens}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bullet\footnotesize\tt \purple{ \: Solution:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\tt{ \frac{1}{f} =  \frac{1}{v} +  \frac{1}{u}   }

\tt{ \frac{1}{15} =  \frac{1}{v}   +   \frac{1}{ - 20}   }

\tt{ \frac{1}{15} =  \frac{1}{v}    -  \frac{1}{  20}   }

\tt{ \frac{1}{15} +  \frac{1}{  20} =  \frac{1}{v}      }

\tt{ \frac{4 + 3}{60}=  \frac{1}{v}      }

\tt{ \frac{7}{60}=  \frac{1}{v}      }

 \footnotesize \boxed{ \bullet\tt \purple{  \: v =  \frac{60}{7} }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bullet\footnotesize\tt \purple{ \: Behind  \: the  \: mirror}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\tt{   Magnification (m)}  \tt{ \:  =   \frac{ - v}{u} }

\footnotesize\tt{   Magnification (m)}  \tt{ \:  =   \frac{ \frac{ - 60}{7}  }{ - 20} }

\footnotesize\tt{   Magnification (m)}  \tt{ \:  =   \frac{ - 60  }{ 7 \times  - 20} }

  \boxed{\bullet\footnotesize\tt \purple{    \: Magnification (m)}  \tt \purple{ \:  =   \frac{  3 }{ 7} }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bullet\footnotesize\tt \purple{ \: Virtual  \: and  \: Erect}

 \bullet\footnotesize\tt \purple{ \: Diminished}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\footnotesize\tt{   Magnification (m)}  \tt{ \:  =   \frac{ h2}{h1} }

\tt{   \frac{ h2}{5} =   \frac{ \frac{ - 60}{7} }{ - 20}  }

\tt{   \frac{ h2}{5} =  \frac{60}{7 \times 20}  }

  \footnotesize\boxed{ \bullet  \: \footnotesize \tt \purple{  h2} \purple \tt \purple{  \: =   \frac{15}{7}   }}

Similar questions