An object 5 cm high forms a virtual image of 1.25 cm high, when placed in front of a convex mirror at a distance of 24 cm. Calculate: (a) the position of the image, (b) the focal length of the convex mirror.
Answers
Given :-
- object height (h) = 5cm
- image height (h') = 1.25cm
- object distance (u) = -24cm
- position of image (v) = ?
- focal length (f) = ?
(a) Magnification (M) = (h')/h = (-v)/u
Substituting the known values :-
1.25/5 = -v/(-25)
5(-v) = 1.25(-25)
-5v = -30
v = -30/-5
v = 30/5
v = 6cm
•°• Image is formed 6cm in front of the mirror.
(b) Mirror formula = 1/v + 1/u = 1/f
1/f = 1/6 + 1/(-24)
1/f = 1/6 - 1/24
1/f = (24 - 6)/144
1/f = 18/144
1/f = 9/72
1/f = 1/8
f = 8cm
•°• Focal length of mirror is 8cm
Given
● Height of object (h) = h_o = 5 cm.
● Height of image (h')= h_i = 1.25 cm.
● Distance of object (u) = -24 cm.[∵ Object is 24 cm in front of mirror]
To find
● Position of image (v)
● Focal length of convex mirror (f)
Solution
a) Using magnification equation :
★ m = hi/ho = -v/u
⇒ 1.25/5 = -v/-24
⇒ -5v = -30
⇒ v = -30/-5
⇒ v = 6 cm
∴ Image is 6 cm in front of the mirror.
___________________________
Again,
b) Using mirror formula :
★ 1/f = 1/v + 1/u
⇒ 1/f = 1/6 + 1/-24
⇒ 1/f = (-4 + 1)/-24
⇒ 1/f = -3/-24
⇒ -3f = -24
⇒ f = -24/-3
⇒ f = 8 cm
∴ Focal length of convex mirror = 8 cm.