an object 5 cm in length is placed at a distance of 20cm in front of concave mirror of radius of curvature 30cm.Find the position of the image‚ its nature and size.
Answers
Explanation:
Given:
Height of object, \sf h_oh
o
= 5 cm
Object distance, u = - 20 cm
Radius of curvature, R = 30 cm
Focal length, f = R/2 = 30/2 = - 15 cm
To find:
Position of image, it's nature and size?
Solution:
\begin{gathered}\dag\;{\underline{\frak{Using\;mirror\;formula\;:}}}\\ \\\end{gathered}
†
Usingmirrorformula:
\begin{gathered}\star\;{\boxed{\sf{\purple{ \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}}}}}\\ \\\end{gathered}
⋆
f
1
=
v
1
+
u
1
\begin{gathered}:\implies\sf \dfrac{1}{- 15} = \dfrac{1}{v} + \dfrac{1}{- 20}\\ \\\end{gathered}
:⟹
−15
1
=
v
1
+
−20
1
\begin{gathered}:\implies\sf \dfrac{1}{v} = \dfrac{1}{- 15} - \dfrac{1}{ - 20}\\ \\\end{gathered}
:⟹
v
1
=
−15
1
−
−20
1
\begin{gathered}:\implies\sf \dfrac{1}{v} = \dfrac{1}{- 15} + \dfrac{1}{20}\\ \\\end{gathered}
:⟹
v
1
=
−15
1
+
20
1
\begin{gathered}:\implies\sf \dfrac{1}{v} = \dfrac{- 4 + 3}{60}\\ \\\end{gathered}
:⟹
v
1
=
60
−4+3
\begin{gathered}:\implies\sf \dfrac{1}{v} = \dfrac{- 1}{60}\\ \\\end{gathered}
:⟹
v
1
=
60
−1
\begin{gathered}:\implies{\boxed{\frak{\pink{v = - 60\;cm}}}}\;\bigstar\\ \\\end{gathered}
:⟹
v=−60cm
★
\begin{gathered}\therefore\;{\underline{\sf{Image\;distance\;is\; \bf{- 60\;cm}.}}}\\ \\\end{gathered}
∴
Imagedistanceis−60cm.
5. The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the measure of each of the angles of the parallelogram.
The measures of two adjacent angles of a parallelogram are in the ratio 3:2.
Find the measure of each of the angles of the parallelogram.