Physics, asked by dhruvjrocks, 9 months ago

an object 5 cm in length is placed at a distance of 30 cm in front of a convex mirror of radius of curvature 40 cm . find the position of the image , its nature and size.​

Answers

Answered by Anonymous
30

Given :

▪ Height of object = 5cm

▪ Distance of object = 30cm

▪ Radius of curvature = 40cm

▪ Type of mirror : convex

To Find :

↗ Position of image

↗ Size of image

↗ Nature of image

Formula :

Mirror formula :

\bigstar\:\underline{\boxed{\bf{\pink{\dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{f}=\dfrac{2}{R}}}}}

Lateral manification :

\bigstar\:\underline{\boxed{\bf{\blue{m=-\dfrac{v}{u}=\dfrac{h'}{h}}}}}

  • u denotes distance of object
  • v denotes distance of image
  • f denotes focal length
  • R denotes radius of curvature
  • h denotes height of object
  • h' denotes height of image

Calculation :

Position of image :

\leadsto\sf\:\dfrac{1}{u}+\dfrac{1}{v}=\dfrac{2}{R}\\ \\ \leadsto\sf\:\dfrac{1}{(-30)}+\dfrac{1}{v}=\dfrac{2}{40}\\ \\ \leadsto\sf\:\dfrac{1}{v}=\dfrac{1}{20}+\dfrac{1}{30}\\ \\ \leadsto\sf\: \dfrac{1}{v}=\dfrac{3+2}{60}\\ \\ \leadsto\sf\:v=\dfrac{60}{5}\\ \\ \leadsto\underline{\boxed{\bf{\green{v=12cm}}}}\:\gray{\bigstar}

Size of image :

\implies\sf\:m=-\dfrac{v}{u}=\dfrac{h'}{h}\\ \\ \implies\sf\:-\dfrac{12}{(-30)}=\dfrac{h'}{5}\\ \\ \implies\sf\:\dfrac{12}{6}=h'\\ \\ \implies\underline{\boxed{\bf{\gray{h'=2cm}}}}\:\orange{\bigstar}

Nature of image :

  • Virtual
  • Erect
  • Small
Answered by Anonymous
104

  \large{\red{ \bf{ \underline {\underline{Answer}}}}} \\  \\  \purple{ \sf{ \mapsto Imge \: Position = 12 \: cm \: (behind \: mirror)}} \\  \\ \purple{ \sf{ \mapsto Image \:Height = 2 \: cm }}  \\  \\ \purple{ \sf{ \mapsto Imge \: Nature = Errect, \: Virtual \: and \: Diminished}}\\  \\   \mathrm{\green{ \underline{Given}}} \\  \\  \sf{ \rightsquigarrow Distance \: (u)  =  - 30 \: cm} \\  \\ \sf{ \rightsquigarrow Radius \: (R) =   40 \: cm} \\  \\ \sf{ \rightsquigarrow Object\: (h_o) = 5 \: cm}\\ \\ \mathrm  {\blue{ \underline{ To \: Find}}} \\  \\  \sf{ \rightsquigarrow v =\:?} \\  \\  \sf{ \rightsquigarrow h_i =  \:  ?}

  • According to given question

 \sf{\underline{We \: have \: to \: write }} \\  \\  \sf{ \implies f =  \frac{R}{2} } \\  \\  \sf{ \implies f =  \frac{ \cancel{40}}{ \cancel{2} }} \\  \\  \sf{ \implies f = 20 \: cm} \\  \\  \sf{\underline{We \: have \:to \: use \: a \: mirror \: formula}} \\  \\  \sf{ \implies  \frac{1}{v}  =  \frac{1}{u} =  \frac{1}{f}  } \\  \\  \sf{ \implies  \frac{1}{v} =  \frac{1}{f}  =  \frac{1}{u}  } \\  \\  \sf{ \implies  \frac{(u - f)}{uf} } \\  \\  \sf{ \implies v =  \frac{uf}{u - f} } \\  \\  \sf{ \implies  \frac{( - 30 \times 20)}{( - 30 - 20)} } \\  \\   \purple{ \implies}\purple{ \underline{ \boxed{ \sf{ v=12 \: cm }}}} \\  \\  \sf{ \implies m =  \frac{h_i}{h_o} } \\  \\  \sf{ \implies \frac{ - v}{u} } \\  \\  \sf{ \implies  \frac{ \cancel{ -} \cancel{ 12}}{  \cancel{-} \cancel{ 30}} } \\  \\  \sf \purple{ \implies} \purple{ \underline{ \boxed{ \sf{h  _i = 2 }}}}

❍ Image position 12 cm (behind mirror)

❍ Image height : 2 cm

❍ Image nature : erect, virtual and diminished

Similar questions