English, asked by heenakousarkoti, 9 months ago

an object 50 cm tall is placed on the principal axis of a convex lens it is 20 CM tall images formed on the screen placed at a distance of 20 cm from the lens can create the focal length of the lens​

Answers

Answered by Anonymous
115

Given

  • Height of object (ho) = +50cm
  • Height of image (hi) = -20cm
  • Object distance (u) = -20cm
  • Focal length (f) = ?

Note :

Height of object is bigger than height of image . That's why image is formed real and inverted

As we know that

Magnification = It is the ratio of height of image or size of image to the height or size of object.

\implies\sf m=\dfrac{v}{u}=\dfrac{h_i}{h_o} \\ \\ \\ \implies\sf \dfrac{v}{u}=\dfrac{h_i}{h_o} \\ \\ \\ \implies\sf \dfrac{-v}{20}=\dfrac{-20}{50} \\ \\ \\ \implies\sf \dfrac{-v}{20}=\dfrac{-2}{5} \\ \\ \\  \implies\sf 5v=40 \\ \\ \\ \implies\sf v=\dfrac{40}{5}=+8cm

Now, apply lens formula

\implies\sf \dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f} \\ \\ \\ \implies\sf \dfrac{1}{8}-\dfrac{(-1)}{20}=\dfrac{1}{f} \\ \\ \\ \implies\sf \dfrac{5+2}{40}=\dfrac{1}{f} \\ \\ \\ \implies\sf \dfrac{1}{f}=\dfrac{7}{40} \\ \\ \\ \implies\sf f=+5.7cm

Hence, the focal length of convex lens is + 5.7cm


VishalSharma01: Awesome As Always :)
Answered by AdorableMe
92

GIVEN

Height of the object (h\sf{_o}) = 50 cm

Height of the image (h\sf{_i}) = 20 cm

Image distance (v) = 20 cm

\underline{\rule{200}3}

TO FIND

The focal length (f) of the lens.

\underline{\rule{200}3}

WE NEED TO KNOW

\bigstar\ \sf{Magnification=\dfrac{h_i}{h_o}=\dfrac{v}{u}  }

\bigstar Lens Formula :-

\sf{\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}    }

\underline{\rule{200}3}

SOLUTION

\sf m=\dfrac{v}{u}=\dfrac{h_i}{h_o} \\  \\ \longrightarrow\sf \dfrac{v}{u}=\dfrac{h_i}{h_o} \\ \\ \longrightarrow\sf \dfrac{20}{u}=\dfrac{-20}{50} \\  \\ \longrightarrow\sf \dfrac{1}{u}=\dfrac{-1}{5} \\ \\   \longrightarrow\sf{-u=5}\\\\\boxed{\sf{\longrightarrow u=-5\ cm}}

\rule{180}2

Now,

Applying the lens formula :-

\sf{\dfrac{1}{v}-\dfrac{1}{u}=\dfrac{1}{f}    }

\sf{\longrightarrow \dfrac{1}{20}-\dfrac{1}{-5}=\dfrac{1}{f}   }\\\\\sf{\longrightarrow \dfrac{1}{20}+\dfrac{1}{5}=\dfrac{1}{f}   }\\\\\sf{\longrightarrow \dfrac{1}{f} =\dfrac{1+4}{20}   }\\\\\sf{\longrightarrow \dfrac{1}{f} =\dfrac{5}{20}   }\\\\\sf{\longrightarrow f=\dfrac{1}{4}    }\\\\\boxed{\sf{\longrightarrow f=4\ cm  }}

Therefore, the focal length (f) of the convex lens is 4 cm.

Similar questions