Physics, asked by studwnt, 10 months ago

An object 5cm in length is placed at a distance of 20 cm in front of a concave mirror of radius of curvature 30 cm. Find the nature , position and size of object.

Answers

Answered by Cosmique
8

Given

\rule{200}2

  • height of object, h₁ = 5 cm
  • position of object, u = -20 cm
  • Mirror given is concave mirror
  • radius of curvature, r = -30 cm

\rule{200}2

To find

\rule{200}2

  • nature of image
  • position of image, v
  • size of image , h₂

\rule{200}2

Formulae used

\rule{200}2

Relation b/w radius of curvature and focal length of mirror

Radius of curvature is equal to 2 times focal length of mirror

 \red{ \bigstar} \boxed{ \sf{r = 2f}}

( where r is the radius of curvature and f is the focal length of mirror)

( Focal length of concave mirror is always Negative )

Mirror formula

 \red{ \bigstar}\boxed{ \sf{ \frac{1}{f} =  \frac{1}{v} +  \frac{1}{u}   }}

( where f is the focal length, v is the position of image, u is the position of object)

formula for Magnification of mirror

 \red{ \bigstar}\boxed{ \sf{m =  \frac{ - v}{u} =  \frac{h_2}{h_1}  }}

(where m is the magnification, vi s the position of image , u is the position of object, h₁ is the height of object , h₂ is the height of image )

\rule{200}2

Solution

Finding the focal length of concave lens

\implies \sf{r = 2f} \\   \implies \sf{ - 30 = 2f} \\  \underline{ \underline{  \implies \red{ \sf{f =  - 15 \: cm}}}}

Finding the position of image

Using mirror formula

\implies \sf{ \frac{1}{f}  =  \frac{1}{u}  +  \frac{1}{v} } \\  \\  \implies \sf{ \frac{1}{ - 15} =  \frac{1}{ - 20} +  \frac{1}{v}   } \\  \\  \implies \sf{ \frac{1}{v}  =  \frac{1}{ - 15} +  \frac{1}{20}  } \\  \\ \implies  \sf{ \frac{1}{v} =  \frac{ - 4 + 3}{60}  } \\  \\  \underline{ \underline{ \implies \red{ \sf{v =  - 60 \: cm}}}}

Finding the Height of image

Using formula for magnification

\implies \sf{ \frac{ - v}{u}  =  \frac{h_2}{h_1} } \\  \\  \implies \sf{ \frac{ - ( - 60)}{ - 20}  =  \frac{h_2}{5} } \\  \\   \underline{ \underline{\implies \red{ \sf{h =  - 15 \: cm}}}}

\rule{200}2

Hence,

Nature of image is Real and inverted.

( because image is formed in front of mirror (v= -60) and height of image is found negative)

Position of image is in front of mirror at v = - 60 cm

Size of image is 15 cm ( and inverted image).

\rule{200}2

Answered by Anonymous
110

Question:-

An object 5cm in length is placed at a distance of 20 cm in front of a concave mirror of radius of curvature 30 cm. Find the nature , position and size of object.

Given:

Height of object, \sf h_o

= 5 cm

Object distance, u = - 20 cm

Radius of curvature, R = 30 cm

Focal length, f = R/2 = 30/2 = - 15 cm

To find:

Position of image, it's nature and size?

Solution:

\begin{gathered}\dag\;{\underline{\frak{Using\;mirror\;formula\;:}}}\\ \\\end{gathered}

\begin{gathered}\star\;{\boxed{\sf{\purple{ \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}}}}}\\ \\\end{gathered}

\begin{gathered}:\implies\sf \dfrac{1}{- 15} = \dfrac{1}{v} + \dfrac{1}{- 20}\\ \\\end{gathered}

\begin{gathered}:\implies\sf \dfrac{1}{v} = \dfrac{1}{- 15} - \dfrac{1}{ - 20}\\ \\\end{gathered}

\begin{gathered}:\implies\sf \dfrac{1}{v} = \dfrac{1}{- 15} + \dfrac{1}{20}\\ \\\end{gathered}

\begin{gathered}:\implies\sf \dfrac{1}{v} = \dfrac{- 4 + 3}{60}\\ \\\end{gathered}

\begin{gathered}:\implies\sf \dfrac{1}{v} = \dfrac{- 1}{60}\\ \\\end{gathered}

\begin{gathered}:\implies{\boxed{\frak{\pink{v = - 60\;cm}}}}\;\bigstar\\ \\\end{gathered}

\begin{gathered}\therefore\;{\underline{\sf{Image\;distance\;is\; \bf{- 60\;cm}.}}}\\ \\\end{gathered}

Nature of image:

Image is virtual and erect.

Image formed behind the mirror.

⠀━━━━━━━━━━━━━━━━━━━━━━━━━

Size of image,

\begin{gathered}\dag\;{\underline{\frak{Using\; Formula\;of\;magnification\;:}}}\\ \\\end{gathered}

\begin{gathered}\star\;{\boxed{\sf{\purple{ \dfrac{h_i}{h_o} = \dfrac{v}{u}}}}}\\ \\\end{gathered}

\begin{gathered}:\implies\sf \dfrac{h_i}{5} = \cancel{ \dfrac{- 60}{20}}\\ \\\end{gathered}

\begin{gathered}:\implies\sf h_i = - 3 \times 5\\ \\\end{gathered}

\begin{gathered}:\implies{\boxed{\frak{\pink{h_i = - 15\;cm}}}}\;\bigstar\\ \\\end{gathered}

\therefore\;{\underline{\sf{Height\;or\;size\;of\;image\;is\; \bf{- 15\;cm}.}}}

Similar questions