Physics, asked by avishkarc9151, 11 months ago

An object 6cm in size is placed at 30 in front of a concave mirror of focal length 15cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Find nature and size of the image?

Answers

Answered by Anonymous
8

v= -50cm

By sign convention:

Object Distance,u: -30cm

Focal length,f:-15cm

Image distance,v:?

Applying Mirror formula,

$$\begin{lgathered}\frac{1}{v} + \frac{1}{u} = \frac{1}{f} \\ \\ \\ \implies \frac{1}{v} = \frac{1}{f} - \frac{1}{u} \\ \\ \\ \implies \: \frac{1}{v} = \frac{1}{ - 25} - \frac{1}{ - 50} \\ \\ \\ \implies \: \frac{1}{v} = \frac{ - 1}{25} + \frac{1}{50} = \frac{ - 2 + 1}{50} \\ \\ \\ \implies \: \frac{1}{v} = \frac{ - 1}{50} \\ \\ \\ \implies \: \boxed{v = - 50cm}\end{lgathered}$$

Characteristics of image formed:

1)Real and inverted

2)Same size as the object

3)Formed in front of the mirror

Now,

•Magnification factor,m:

$$m = \frac{ - v}{u} = - \frac{ - 50}{ - 50} = - 1$$

Height of object:6cm

Height of image:?

Also,

m= h`/h

=> -1=h`/6

=>h`= -6

Height of the image is -6

Answered by Anonymous
9

 \Large\bf   {\orange {\underline { \underline  {Given}} : -  }}

➝ Object distance, u = -30cm

➝ Focal length, F = -15cm

➝ Object height, h = 6cm

 \Large\bf   {\orange {\underline { \underline  {To \: find}} : -  }}

➝ Nature and size of the image

 \Large\bf   {\orange {\underline { \underline  {Solution}} : -  }}

using Mirror formula,

 \longrightarrow \sf \frac{1}{v}  +  \frac{1}{u}  =  \frac{1}{f}  \\  \\  \longrightarrow  \sf \frac{1}{v}  =  \frac{1}{f}  -  \frac{1}{u}   \\

 \longrightarrow  \sf \frac{1}{v} =  \frac{1}{ - 25} -  \frac{1}{ - 50}    \\

 \longrightarrow  \sf \frac{1}{v}  =  -  \frac{1}{  25}  +  \frac{1}{50} \\

 \longrightarrow  \sf \frac{1}{v}  =  \frac{ - 2 + 1}{50}  \\

 \longrightarrow \sf \frac{1}{v}  =  \frac{1}{50}  \\

 \longrightarrow  {\sf v =  - 50cm}

Hence, image distance is -50cm

Nature of image.....

  • Image is real and inverted
  • Same size as object
  • Image will be formed infront of the mirror

   \sf magnification ,\: m =  \frac{ - v}{u}  \\

 \longrightarrow \sf m =  -  \cancel \frac{ - 50}{ - 50}  =  - 1 \\

We know,

→ Object height, h = 6cm

→ Image Height, h' = ?

also,

   \sf magnification ,\: m =  \frac{h'}{h}  \\

 \longrightarrow  \sf - 1 =  \frac{h'}{6}  \\

 \longrightarrow  \sf h' =  - 1 \times 6 =  - 6cm

Thus, the height of the image is -6cm

Similar questions