Science, asked by anay7praveen, 6 months ago

An object falls freely from 180 m height

a) Find the velocity with which it strikes the ground. 1

b) Find the time taken to reach the ground. 1

c) Find the displacement in 3rd second of falling 1

d) Write the displacement-time relation​

Answers

Answered by NehalikaSingh
3

Explanation:

h=180m

u=0

g =9.8

then according v2=u2+2gh

v2=02+2×9.8×180

=3528

v2= 3528

v = 59.39.....

Answered by Anonymous
4

\huge\bigstar \:   \huge\mathrm { \underline{ \purple{given} }} \:  \bigstar \: </p><p> \:  \\  \\

  • u = 0m/sec ( free fall )
  • v = ?
  • s = 180m
  • g = 10m/sec²

 \\  \\ \huge\bigstar \:   \huge\mathrm { \underline{ \purple{solution} }} \:  \bigstar \:  \\  \\ </p><p>

 { \bf{ \red{a)}} }\rm{velocity \: at \: which \: it \: strikes \: the \: ground.}

➥ By 3rd Kinematical Equation,

 \boxed{ \pink{ {v}^{2} =  {u}^{2}   + 2as}}

➣ Putting values we get,

 \sf{ {v}^{2}  =  {0}^{2}  + 2(10)(180)} \\  \\  \sf{ {v}^{2} = 3600 } \\  \\  \sf{ v =  \sqrt{3600} } \\  \\  \large\sf \boxed{ \sf{ v =60 \frac{m}{sec}  }}

 \therefore \sf{the \: velocity \: at \: which \: the \: ball \: strikes} \\  \sf{the \: ground \: is} \:  \blue{60 \frac{m}{sec} } \: .

▬▬▬▬▬▬▬▬▬▬▬▬▬

 \bf{ \red{b )}} \rm{time \: taken \: to \: reach \: the \: ground.}

➥ By 1st Kinematical Equation,

 \boxed{ \pink{v = u + gt}}

➣ Putting values we get,

 \sf{60 = 0 + (10)(t)} \\  \\  \sf{60 = 10t} \\  \\  \large\boxed{ \sf {t = 6sec}}

 \therefore \sf{time \: taken \: to \: reach \: the \: ground \: is \: } \\   \:  \:  \:  \:  \sf{ \blue{6sec}} \: .

▬▬▬▬▬▬▬▬▬▬▬▬▬

 \large \bf{ \red{c)}} \rm{displacement \: in \: 3rd \: sec.}

Displacement in 3rd second

ㅤㅤ ㅤㅤ ㅤ= displacemnt in 3sec - displacement in 2sec

➥ By 2nd Kinematical equation,

 \boxed{ \pink{s = ut +  \frac{1}{2} a {t}^{2} }}

➽ We will find displacement in 3sec.

 \sf{ s \: _{(3sec)} = (0)(3) +  \frac{1}{2} (10)( {3)}^{2} } \\  \\ \sf{ s \: _{(3sec)} \: =  \frac{1}{2}(10)(9) } \\  \\  \sf{ s \: _{(3sec)} \: = 45m}

➽ Now, we will find displacement in 2sec.

 \sf{ s \: _{(2sec)} \: = (0)(2) +  \frac{1}{2}(10)( {2)}^{2}  } \\  \\  \sf{ s \: _{(2sec)} \: =  \frac{1}{2} (10)(4)} \\  \\  \sf{ s \: _{(2sec)} \: = 20m}

Displacement in 3rd sec = 45-20 = 25m

 \therefore \rm{displacement \: in \: 3rd \: sec \: is \:} \blue{25m}.

▬▬▬▬▬▬▬▬▬▬▬▬▬

 \large \bf{ \red{d)}} \rm{displacement \: time \: relation.}

 \sf{s = ut +  \frac{1}{2} a {t}^{2} } \\  \\  \sf{s = (0)t +  \frac{1}{2} (10)( {t)}^{2} } \\   \\  \large\boxed{ \sf{s = 5 {t}^{2} }}

 \therefore \rm{displacement \: time \: relation \: is \: } \\   \:  \:  \:  \:  \: \sf{ \blue{s = 5 {t}^{2} }}.

Similar questions