Physics, asked by sud2359, 3 months ago

An object is kept at 0.2 m from a convex lens of focal length 0.15 m. The position of the image is

Answers

Answered by Anonymous
13

Explanation:

 \blue{ \underline{ \bf{QUESTION :  - }}}

An object is kept at 0.2 m from a convex lens of focal length 0.15 m. The position of the image is?

_________________________

 \boxed{ \huge{ \bold{Given}}}

Note:

 \boxed{ \underline{ \sf{I  \: am  \: Convert  \: Value \:  Meter \:  (m) \:  to  \: Canti \:  meter  \: (cm)}}}

  • u= - 0.2 m = -20 cm

  • f = 0.15 m = 15 cm

 \boxed{ \huge{ \bold{to \: find}}}

  • Position on the image

 \star{ \pink{ \underline{ \underline{Solution :  - }}}}

By Using Lens Formula

  \boxed{ \boxed{ {\huge{ \bold{ \red{ \frac{1}{f}  =  \frac{1}{v}  -  \frac{1}{u}}}}}}}

 \large{ \bold{ \frac{1}{15}  =  \frac{1}{v}  -  \frac{1}{( - 20)}}}

\large{ \bold{  \frac{1}{15}  =  \frac{1}{v}  +  \frac{1}{20}}}

\large{ \bold{  \frac{1}{15}  -  \frac{1}{20}  =  \frac{1}{v}}}

\large{ \bold{  \frac{4 - 3}{60}  =  \frac{1}{v}}}

\large{ \bold{  \frac{1}{60}  =  \frac{1}{v}}}

\large{ \bold{\purple{ \boxed{ \bold{v = 60 \: cm}}}}}

 {\therefore{ \green{ \sf{since ,\: the \: value \: of \: "v "\: is \: positive \: so \: image \: is \: real \: and \: inverted}}}}

_________________________

MORE YOU KNOW

  • U = is the object of distance.

  • V = image distance.

  • f = Local length

 \boxed{ \sf{f =  \frac{R}{2}}}

  • R = radius of curvature of the spherical mirror.

  • For Lens U always taken as Negative.

  • For focal length, f in lens is always taken as negative for concave and positive for convex.

_________________________

Similar questions