Math, asked by seemad8499, 9 months ago

An object is kept on the principal axis of a concave mirror of focal length 12 CM if the object at a distance of 18cm from the mirror Calculate image distance and magnification of the mirror

Answers

Answered by Anonymous
62

Given

  • Focal length (f) = - 12cm
  • Object distance (u) = - 18cm

Find out

  • Image distance
  • Magnification

Solution

According to the Mirror Formula

\implies\tt \dfrac{1}{u}+\dfrac{1}{v}=\dfrac{1}{f} \\ \\ \\ \implies\tt \dfrac{-1}{18}+\dfrac{1}{v}=\dfrac{-1}{12} \\ \\ \\ \implies\tt \dfrac{1}{v}=\dfrac{1}{18}-\dfrac{1}{12} \\ \\ \\ \implies\tt \dfrac{1}{v}=\dfrac{2-3}{36} \\ \\ \\ \implies\tt \dfrac{1}{v}=\dfrac{-1}{36} \\ \\ \\ \implies\sf v=-36cm

Hence, image distance is - 36 cm

\rule{200}3

Magnification : It is the ratio of height or size of image to the height or size of object.

\implies\tt m=\dfrac{-v}{u}=\dfrac{hi}{ho} \\ \\ \\ \implies\tt m=\dfrac{-v}{u} \\ \\ \\ \implies\tt m=\dfrac{-(-36)}{(-18)} = -2

Hence, magnification is - 2

\rule{200}3

Answered by ThakurRajSingh24
21

Given :

• Focal length (f) = -12cm

• Object distance (u) = -18cm

TO FIND :

• Image distance

• Magnification

SOLUTION :

Applying mirror formula,

=&gt;  \frac{1}{v}  +  \frac{1}{u}  =  \frac{1}{f}  \\ \\  =&gt;  \frac{ - 1}{18}  +  \frac{1}{u}  =  \frac{ - 1}{12}  \\ \\  =&gt;  \frac{1}{u}  =  \frac{1}{18}  -  \frac{1}{12}  \\  \\ =&gt;  \frac{1}{v}  =  \frac{12 - 18}{18 \times 12}  \\  \\ =&gt;  \frac{1}{v}  =  \frac{ - 6}{216}  \\  \\ =&gt;\bold\red{ <strong>v</strong> \:  <strong>=</strong>  <strong>-</strong> <strong>36cm</strong> }\:

We know that,

=&gt; Magnification \:  =  \frac{v}{u}  =  \frac{h_i}{h_o}  \\  \\ =&gt; Magnification \:  =  \frac{ - v}{u}  \\  \\ =&gt; Magnification \:  =  \frac{ - ( - 36)}{ - 18}  \\ \\  =&gt;\bold\red<strong> </strong>{<strong>Magnification</strong>  <strong>=</strong>  <strong>-</strong> <strong>2</strong><strong> </strong>}

Hence,

=> Image distance = -36cm

=> Magnification = -2

Similar questions