Physics, asked by Kailash169, 5 months ago

An object is moving with uniform acceleration it's velocity after 5s is 25m/s and after 8s is 34m/s find the distance travelled by the object in 12thsecond

Answers

Answered by Anonymous
138

Given :-

  • Velocity of object after 5sec is 25 m/s
  • Velocity after 8 sec is 34 m/s

To Find :-

  • The distance travelled by the object in 12th second.

Solution :-

  • Let the initial velocity of the object be u and Acceleration be a .

Using Equation of Motion:-

  • 25 = u+5a . . . . . . eq (1)

  • 34=u+8a . . . . . . eq (2)

Now , Subtract equation (1) from (2) :-

\sf\:  \: \:  \:  \:  \:  \: \::\implies\:34-25=8a-5a\\

\sf\green{\:  \: \:  \:  \:  \:  \: \::\implies\:a=3ms^{-2}}\\

Putting a=3 in equation (1):-

\sf\green{\:  \: \:  \:  \:  \:  \: \::\implies 25 = u+5a}\\

\sf\:  \: \:  \:  \:  \:  \: \::\implies 25 = u+5\times 3\\

\sf\:  \: \:  \:  \:  \:  \: \::\implies 25 = u+15\\

\sf \:  \: \:  \:  \:  \:  \: \:\green{:\implies u = 10\: m/s}\\

Distance travelled in 12th second:-

\sf\pink{\:  \: \:  \:  \:  \:  \: \:S_{nth}=u+\dfrac{a}{2}(2n-1)}

\sf\:  \: \:  \:  \:  \:  \: \::\implies \:S_{12th}=u+\dfrac{a}{2}[2(12)-1]\\

\sf\:  \: \:  \:  \:  \:  \: \::\implies\:S_{12th}=10+\dfrac{3}{2}(23)\\

\sf\:  \: \:  \:  \:  \:  \: \::\implies\:S_{12th}=10+\dfrac{69}{2}\\

\sf\:  \: \:  \:  \:  \:  \: \::\implies\:S_{12th}=\dfrac{89}{2}\\

\sf\:  \: \:  \:  \:  \:  \: \:\pink{:\implies\:S_{12th}=44.5m}\\

\therefore\:\underline{\textsf{ The distance travelled by the object in 12th sec is  \textbf{44.5\: m}}}.\\

Answered by Anonymous
859

Given : Velocity of object after 5sec is 25m/s & Velocity after 8 sec is 34m/s.

To Find : Find the distance travelled by the object in 12th second ?

_________________________

Solution : Let the initial velocity of the object be u and Acceleration be a.

~

\underline{\frak{As ~we ~know ~that~:}}

  • \boxed{\sf\pink{v~=~u~+~at}}

~

  • After 5s
  • {\sf{25~=~u~+~5a\qquad\bigg\lgroup{Eqⁿ~1}\bigg\rgroup}}
  • After 8s
  • {\sf{34~=~u~+~8a\qquad\bigg\lgroup{Eqⁿ~2}\bigg\rgroup}}

~

◗Subtract equation 1 from equation 2

  • {\sf{34~-~25~=~u~+~8a~-~u~-~5a}}
  • {\sf{9~=~3a}}
  • {\sf{a~=~3m/s^2}}

~

◗Substitute a = 3m/s² in equation 1

  • {\sf{25~=~u~+~5~×~3}}
  • {\sf{u~=~10m/s^2}}

~

◗Distance travelled in 12th second

  • {\sf{S~=~u~+~a\bigg(n~-~\dfrac{1}{2}\bigg)}}
  • {\sf{S~=~10~+~3~×~\bigg(12~-~\dfrac{1}{2}\bigg)}}
  • {\underline{\boxed{\frak{\purple{S~=~44.5m}}}}}

~

Hence,

\therefore\underline{\sf{Distance ~travelled~ in ~12th ~second~ is~\bf{\underline{44.5m}}}}

Similar questions