Physics, asked by Vikasini19, 8 months ago

an object is placed 10 cm from a concave mirror the focal length is 5 cm. Determine
a) Image distance
b) Magnification of image​

Answers

Answered by INSIDI0US
6

Answer:

  • Image distance is -10 cm
  • Magnification of image is -1

Given:

  • Object distance (u) = -10 cm [Object is on the left side of the mirror that is -ve side].
  • Focal length (f) = -5 cm [Focus of the concave mirror is in the front of the mirror, on the left side].

Explanation:

\rule{300}{1.5}

From mirror formula we know,

\bigstar\ {\underline{\boxed{\sf{\dfrac{1}{v}\ +\ \dfrac{1}{u}\ =\ \dfrac{1}{f}}}}}

This implies the relationship between the focal length, the distance of the object from the mirror, and the distance of the image from the mirror.

Here,

  • v denotes image distance.
  • u denotes object distance.
  • f denotes focal length.

Substitute the respective values,

{\longrightarrow{\sf{\dfrac{1}{v}\ +\ \dfrac{1}{u}\ =\ \dfrac{1}{f}}}} \\ \\ \\ {\longrightarrow{\sf{\dfrac{1}{v}\ +\ \dfrac{1}{-10}\ =\ \dfrac{1}{-5}}}} \\ \\ \\ {\longrightarrow{\sf{\dfrac{1}{v}\ -\ \dfrac{1}{10}\ =\ \dfrac{1}{-5}}}} \\ \\ \\ {\longrightarrow{\sf{\dfrac{1}{v}\ =\ \dfrac{1}{-5}\ +\ \dfrac{1}{10}}}} \\ \\ \\ {\longrightarrow{\sf{\dfrac{1}{v}\ =\ \dfrac{-2\ +\ 1}{10}}}} \\ \\ \\ {\longrightarrow{\sf{\dfrac{1}{v}\ =\ \dfrac{-1}{10}}}} \\ \\ \\ {\longrightarrow{\large{\underline{\boxed{\red{\sf{v\ =\ -10\ cm}}}}}}}

The image distance is -10 cm.

\rule{300}{1.5}

\rule{300}{1.5}

Now, let us find out the magnification of the image.

From magnification formula we know,

\bigstar\ {\underline{\boxed{\sf{m\ =\ \dfrac{-v}{u}}}}}

Here,

  • m denotes magnification.
  • v denotes image distance.
  • u denotes object distance.

Substitute the respective values,

{\longrightarrow{\sf{m\ =\ \dfrac{-v}{u}}}} \\ \\ \\ {\longrightarrow{\sf{m\ =\ \dfrac{-(-10)}{-10}}}} \\ \\ \\ {\longrightarrow{\sf{m\ =\ \dfrac{-10}{10}}}} \\ \\ \\ {\longrightarrow{\large{\underline{\boxed{\red{\sf{m\ =\ -1}}}}}}}

The magnification of the image is -1.

\rule{300}{1.5}

Similar questions