Physics, asked by katreddyyashwanthred, 10 months ago

An object is placed at a distance of 10 cm from a convex mirror of focal length 15 cm. Find the position and nature of the image.​

Answers

Answered by Uriyella
69

Question:

An object is placed at a distance of 10 cm from a convex mirror of focal length 15 cm. Find the position and nature of the image.

Answer:

U = -10 cm

f = 15 cm

\frac{1}{f} = \frac{1}{v} + \frac{1}{u}

So, \frac{1}{v} = \frac {1}{f} - \frac {1}{u}

\frac{1}{v} = \frac{1}{15} + \frac{1}{10}

\frac{1}{v} = \frac{(2+3)}{30} (lcm)

Therefore \: v = \frac{5}{30} = 6 cm

Hence the image is formed behind the mirror and therefore it is virtual and erect.

Answered by sourya1794
24

{\bold{\orange{\underline{\green{G}\purple{iv}\orange{en}\red{:-}}}}}

  • \rm\:Object\:distance\:(u)=-10\:cm

  • \rm\:Focal\:length\:(f)=15\:cm

{\bold{\pink{\underline{\pink{To}\:\purple{Fi}\blue{nd}\red{:-}}}}}

  • \rm\:Image\:distance\:(v)=?

{\bold{\purple{\underline{\red{So}\purple{lut}\green{ion}\orange{:-}}}}}

Using mirror formula:-

\pink{\underline{\boxed{\bf{\dfrac{1}{v}+\dfrac{1}{u}=\dfrac{1}{f}}}}}

\rm\longrightarrow\dfrac{1}{v}+\dfrac{1}{-10}=\dfrac{1}{15}

\rm\longrightarrow\dfrac{1}{v}-\dfrac{1}{10}=\dfrac{1}{15}

\rm\longrightarrow\dfrac{1}{v}=\dfrac{1}{15}+\dfrac{1}{10}

\rm\longrightarrow\dfrac{1}{v}=\dfrac{2+3}{30}

\rm\longrightarrow\dfrac{1}{v}=\cancel\dfrac{5}{30}

\rm\longrightarrow\dfrac{1}{v}=\dfrac{1}{6}

\rm\longrightarrow\:v=6\:cm

Thus,the position of image is at distance of 6 cm from the convex mirror.

and nature of image is virtual and erect.

Similar questions