Physics, asked by Anonymous, 3 months ago

An object is placed at a distance of 15 cm in front of a convex mirror of radius of curvature 10 cm. (a) Where will the image form ? (b) Find the magnification m. (c) What will be the nature of Image, real or virtual ?​

Answers

Answered by dibyangshughosh309
75

 \huge{ \underline{ \bf{Given \:  : }}}

  •  \tt \: r = 10 \: cm
  •  \tt \: f =  \frac{r}{2}  = 5 \: cm \: (positive)
  •  \tt \: u = 15 \: cm \: (negative)
  •  \tt \: v =  ?

 \huge{ \underline{ \bf{To \:  find \:  : }}}

  •  \tt \: a. \: where \: the \: image \: will \: form
  • { \tt{b. \: magnification}} \: m
  •  \tt \: c. \: the \: nature \: of \: the \: image

 \huge{ \underline{ \underline{ \mathrm{Solution \:  :  - }}}}

A.

As we know,

From relation

  \purple \leadsto \star\red{ \underline{ \underline{ \boxed{ \tt{ \green{ \frac{1}{u}  +  \frac{1}{v}  =  \frac{1}{f} }}}}}} \star

 \\  \tt \to \frac{1}{v}  +  \frac{1}{( - 15)}  =  \frac{1}{5}  \\

 \\  \tt \to \frac{1}{v}  =  \frac{1}{5}  +  \frac{1}{15}  \\

 \\  \tt \to \frac{1}{v}  =  \frac{3 + 1}{15}  \\

 \\  \tt \to \frac{1}{v}  =  \frac{4}{15}  \\

 \\  \tt \to \: v =  \frac{15}{4}  \\

 \\  \tt \to \: v = 3.75 \: cm \\

Thus the image will form at the a distance 3.75 cm behind the mirror.

B.

{ \tt \: magnification \: m }=  -  \frac{v}{u}

 \tt =  -  \frac{3.75}{( - 15)}

 \tt  =  \frac{1}{4}

Thus the size of the image is one-fourth the size of the object.

C.

The image will be virtual and erect.

Similar questions