Physics, asked by childmarriage8728, 10 months ago

An object is placed at a distance of 20 cm. in front of a convex lens whose radius of curvature is 40 cm. The image is formed at

Answers

Answered by Anonymous
25

\color{darkblue}\underline{\underline{\sf Given-}}

  • Object is placed at Distance (u) = 20cm
  • Radius of Curvature (R) = 40cm

\color{darkblue}\underline{\underline{\sf To\:Find-}}

  • Image distance (v)

━━━━━━━━━━━━━━━━━━━

We know that -

\implies{\sf R=2f}

\implies{\sf f=\dfrac{R}{2}}

\implies{\sf f=\dfrac{40}{2} }

\color{orange}\implies{\sf f=+20\:cm }

━━━━━━━━━━━━━━━━

For Convex Lens

  • f = +ve
  • u = -ve

━━━━━━━━━━━━━━━━

Lens Formula

\color{violet}\blacksquare{\dfrac{1}{f}=\dfrac{1}{v}-\dfrac{1}{u}}

\implies{\sf \dfrac{1}{20}=\dfrac{1}{v}-\left(-\dfrac{1}{20}\right) }

\implies{\sf \dfrac{1}{20}=\dfrac{1}{v}+\dfrac{1}{20}}

\implies{\sf \dfrac{1}{v}=\dfrac{1}{20}-\dfrac{1}{20}}

\color{red}\implies{\sf v=\infty }

\color{darkblue}\underline{\sf Nature\:of\:image}

  • \color{red}{\sf Virtual} image in front on lens
  • \color{red}{\sf erect}
  • \color{red}{\sf Enlarged}

Attachments:
Answered by Rythm14
64

Given :-

A convex lens in which,

  • object distance (u) = -20cm
  • radius of curvature = 40cm

_____________________________

We know that,

R = 2f

So,

40 = 2f

f = 40/2

•°• f = 20cm

____________________________

lens\: formula \:  =   \frac{1}{v}  -  \frac{1}{u}  =  \frac{1}{f}

Substituting values in the formula,

\rightarrow \frac{1}{v}  = \frac{1}{u}   +  \frac{1}{f}  \\  \rightarrow \frac{1}{v }  =  \frac{1}{( - 20)}  +  \frac{1}{20}  \\ \rightarrow \:  \frac{1}{v}  =  -  \frac{1}{20}  +  \frac{1}{20}  \\  \rightarrow \:  \frac{1}{v}  =  \frac{ - 20 + 20}{20(20)}  \\ \rightarrow \:  \frac{1}{v}  =  \frac{0}{400}  \\  \rightarrow \: v \:  = 0

___________________________

•°• Image formed is at infinity.


Nereida: Great !
Rythm14: Thanka!
Similar questions