Physics, asked by Aadithyan007, 7 months ago

An object is placed at a distance of 3 cm from a concave lens of focal length 12 cm. Find the position, size and nature of image​

Answers

Answered by Anonymous
7

u=-3cm

f=-12cm

  Lens ~Formula=~\: \boxed{ \frac{1}{f}  =  \frac{1}{v}  -  \frac{1}{u}}  \\

 \frac{1}{v}  =  (\frac{1}{ - 12})  -  (\frac{1}{ - 3} )

 \frac{1}{v}  =   \frac{ - 1}{12}  +  \frac{1}{3}

 \frac{1}{v}  =   \frac{ - 1 + 4}{12}

 \frac{1}{v}  =   \frac{3}{12}

v =  \frac{12}{3}

\underline { \underline {v = 4cm}}

Position = 4cm

Nature= Virtual,erect & magnified.

Answered by BrainlyModerator
6

 \sf \: u=-3cm \\  \\ </p><p> \sf \: f=-12cm \\  \\ </p><p> \sf \: \begin{gathered}Lens ~Formula=~\: \boxed{ \frac{1}{f} = \frac{1}{v} - \frac{1}{u}}  \\ \\\end{gathered}  \\ </p><p> \sf \: \frac{1}{v} = (\frac{1}{ - 12}) - (\frac{1}{ - 3} )  \\  \\ </p><p> \sf \: \frac{1}{v} = \frac{ - 1}{12} + \frac{1}{3}  \\  \\ </p><p> \sf \: \frac{1}{v} = \frac{ - 1 + 4}{12}  \\  \\ </p><p> \sf \: \frac{1}{v} = \frac{3}{12}   \\ \\ </p><p> \sf \: v = \frac{12}{3} \\   \\ </p><p> \sf \: \underline { \underline {v = 4cm}}  \\  \\ </p><p> \sf \: Position = 4cm \\  \\ </p><p> \sf \: Nature= Virtual,erect  \: and \:  magnified.

Similar questions