Physics, asked by prasannalakshmim86pl, 7 months ago

 An object is placed at a distance of 40cm in front of a convex lens of focal length 20cm the image is formed at a distance of​

Answers

Answered by Anonymous
5

Given :

  • Focal length (f) = 20 cm

  • Object Distance (u) = 40 cm

To find :

The image distance (v).

Solution :

We know the lens formula b, i.e,

\underline{\boxed{\bf{\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}}}}

Where :-

  • u = Object Distance
  • v = Image Distance
  • f = Focal Length

Now , using the lens formula and substituting the values in it, we get :-

:\implies \bf{\dfrac{1}{f} = \dfrac{1}{v} - \dfrac{1}{u}} \\ \\ \\

:\implies \bf{\dfrac{1}{20} = \dfrac{1}{v} - \dfrac{1}{(-40)}} \\ \\

[Note :- In a convex mirror , the value of Object Distance (u) is always negative and the values of Focal length (f) and image distance (v) is always postive] \\ \\

:\implies \bf{\dfrac{1}{20} + \dfrac{1}{(- 40)} = \dfrac{1}{v}} \\ \\ \\

:\implies \bf{\dfrac{(- 2) + 1}{(- 40)} = \dfrac{1}{v}} \\ \\ \\

:\implies \bf{\dfrac{(- 1)}{(- 40)} = \dfrac{1}{v}} \\ \\ \\

:\implies \bf{\dfrac{(\not{-} 1)}{(\not{-} 40)} = \dfrac{1}{v}} \\ \\ \\

:\implies \bf{\dfrac{1}{40} = \dfrac{1}{v}} \\ \\

By Cross-Multiplication , we get :- \\ \\

:\implies \bf{v = 40} \\ \\ \\

\underline{\boxed{\therefore \bf{Image\:Distance\:(v) = 40\:cm}}} \\ \\

Hence, the image distance is 40 cm.

Answered by Anonymous
53

\underline{\underline{\pink{\sf Given:}}}

  • Object Distance, u = 40cm
  • Focal Length, f = 20cm

\underline{\underline{\pink{\sf Find:}}}

  • Image Distance, v = ?

\underline{\underline{\pink{\sf Solution:}}}

we, know that

Lens Formula

\underline{\boxed{ \sf\dfrac{1}{v} -  \dfrac{1}{u} =  \dfrac{1}{f} }}

where,

  • u = -40
  • f = 20

So,

\sf \to\dfrac{1}{v} -  \dfrac{1}{u} =  \dfrac{1}{f}

\sf \to\dfrac{1}{v} -  \dfrac{1}{( - 40)} =  \dfrac{1}{20}

\sf \to\dfrac{1}{v}  +  \dfrac{1}{40} =  \dfrac{1}{20}

\sf \to\dfrac{1}{v} =  \dfrac{1}{20} -  \dfrac{1}{40}

Take L.C.M

\sf \to\dfrac{1}{v} = \dfrac{1 \times 2 - 1 \times 1}{40}

\sf \to\dfrac{1}{v} = \dfrac{ 2 - 1}{40}

\sf \to\dfrac{1}{v} = \dfrac{1}{40}

Do, cross Multiplication

 \sf \to\dfrac{1}{v} = \dfrac{1}{40}

 \sf \to 1 \times v = 40 \times 1

 \sf \to v = 40cm

Hence, distance of image will be 40cm

Similar questions