Physics, asked by ibruha49, 4 months ago

An object is placed at the following distances from a convex lens of focal length 15 cm:
(a) 35 cm (6) 30 cm (c) 20 cm (d) 10 cm
Which position of the object will produce :
(i) a magnified real image ?
(ii) a magnified virtual image ?
(iii) a diminished real image ?
(iv) an image of same size as the object ?
is the image formed​

Answers

Answered by Anonymous
2

\huge\pink{\fbox{\tt{࿐αɴѕωєя࿐}}}

Given :

An object is placed at following distances from a concave mirror of focal length 15 cm.

(To Find)

:-

➦ Which position of the object will produce :

(i) Virtual image.

(ii) Diminished and real image.

(iii) Magnified and real image.

(iv) Image of same size.

Formula Used :-

 \longmapsto \sf\boxed{\bold{\pink{m =\: \dfrac{f}{f - u}}}}

where,

m = Magnification

m = Magnificationf = Focal length

m = Magnificationf = Focal lengthu = Object distance

m = Magnificationf = Focal lengthu = Object distanceSolution :-

(a) Object distance = 10 cm

Given :

Object distance = 10 cm

Focal length = 15 cm

According to the question by using the formula we get:

 \implies \sf m =\: \dfrac{15}{15 - 10}

 \implies \sf m =\: \dfrac{\cancel{15}}{\cancel{5}}

 \implies \sf m =\: \dfrac{3}{1}

 \implies\sf\bold{\red{m =\: 3}}

 \longrightarrow \sf\bold{\purple{Magnification =\: 3}}

{\small{\bold{\green{\underline{\therefore It\: is\: Virtual\: Image\: .}}}}}

\rule{300}{2}

(b) Object distance = 20 cm

Given :

Object distance = 20 cm

Focal length = 15 cm

According to the question by using the formula we get :

 \implies \sf m =\: \dfrac{15}{15 - 20}

 \implies \sf m =\: \dfrac{\cancel{15}}{- \cancel{5}}

 \implies \sf m =\: \dfrac{3}{- 1}

 \implies \sf\bold{\red{m =\: - 3}}

 \longrightarrow \sf\bold{\purple{Magnification =\: - 3}}

{\small{\bold{\green{\underline{\therefore It\: is\: Magnified\: and\: Real\: image\: .}}}}}

\rule{300}{2}

(c) Object distance = 30 cm

Given

:

Object distance = 30 cm

Object distance = 30 cmFocal length = 15 cm

According to the question by using the formula we get :

 \implies \sf m =\: \dfrac{15}{15 - 30}

 \implies \sf m =\: \dfrac{\cancel{15}}{-\cancel{15}}

 \implies \sf m =\: \dfrac{1}{- 1}

 \implies \sf\bold{\red{m =\: - 1}}

 \longrightarrow \sf\bold{\purple{Magnification =\: - 1}}

{\small{\bold{\green{\underline{\therefore It\: is\: Image\: Of\: Same\: Size\: .}}}}}

\rule{300}{2}

d) Object distance = 40 cm

d) Object distance = 40 cmGiven :

d) Object distance = 40 cmGiven :Object distance = 40 cm

Focal length = 15 cm

According to the question by using the formula we get :

 \implies \sf m =\: \dfrac{15}{15 - 40}

 \implies \sf m =\: \dfrac{\cancel{15}}{- \cancel{25}}

 \implies \sf m =\: \dfrac{3}{- 5}

 \implies \sf\bold{\red{m =\: - 0.6}}

 \longrightarrow \sf\bold{\purple{Magnification =\: - 0.6}}

{\small{\bold{\green{\underline{\therefore It\: is\: Diminished\: and\: real\: image\: .}}}}}

\rule{300}{2}

The position of the object will produce :

(i) Virtual image \dashrightarrow (a) 10 cm

(ii) Diminished and real image \dashrightarrow (d) 40 cm

(iii) Magnified and real image \dashrightarrow (b) 20 cm

(iv) Image of same size \dashrightarrow (c) 30 cm

hope it helps you Help

Similar questions