Physics, asked by phanivaldas, 5 months ago

An object is placed in front of a concave lens of focal length 10cm as

at a distance of 5cm. Find the nature and position of image. Draw a ray diagram to explain it .

Answers

Answered by MystícPhoeníx
69

  • Image Position is 3.33 cm

Given:-

Focal length ,f = -10 cm

Object distance ,u = -5 cm

To Find:-

Nature & Position of Image .

Solution:-

As we have to calculate the image position .

Using Lens Formula

•• 1/v - 1/u = 1/f

Substitute the value we get

→ 1/v = 1/f + 1/u

→ 1/v = -1/10 + 1/(-5)

→ 1/v = -1/10 - 1/5

→ 1/v = -1 -2/10

→ 1/v = -3/10

→ v = -10/3

→ v = -3.33 cm

Hence, the image position is 3.33 cm .

Now, Magnification ,

→ m = v/u

→ m = -10/3/-5

→ m = + 2/3

The positive sign shows that the image is erect & virtual .

The image is Two - third of the size of object .

Attachments:
Answered by Anonymous
52

\: \: \: \: \: \: \: \:{\large{\bold{\sf{\underbrace{\underline{Let's \; understand \; the \; concept \; 1^{st}}}}}}}

This question says that an object is placed in front of a concave lens of focal length 10 cm at a distance of 5cm. Find the nature and position of image. Diagram needed.

\: \: \: \: \: \: \: \:{\large{\bold{\sf{\underbrace{\underline{Given \; that}}}}}}

An object is placed in front of a concave lens of focal length 10 cm at a distance of 5 cm. Means

Focal length = 10 cm

Distance = 5 cm

\: \: \: \: \: \: \: \:{\large{\bold{\sf{\underbrace{\underline{To \; find}}}}}}

Nature and position of the image.

\: \: \: \: \: \: \: \:{\large{\bold{\sf{\underbrace{\underline{Diagram}}}}}}

In the attachment.

\: \: \: \: \: \: \: \:{\large{\bold{\sf{\underbrace{\underline{Solution}}}}}}

Nature and position of the image = erect and virtual

Position of the image is 3.33 cm

Nature of image is erect and virtual

\: \: \: \: \: \: \: \:{\large{\bold{\sf{\underbrace{\underline{They \; denotes}}}}}}

u denotes distance of the object.

f denotes length of focal.

\: \: \: \: \: \: \: \:{\large{\bold{\sf{\underbrace{\underline{Using \: formula}}}}}}

\: \: \: \: \: \:{\boxed{\bold{\bf{\longmapsto Len's \: formula \: = \: \dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}}}}}

\: \: \: \: \: \:{\boxed{\bold{\bf{\longmapsto Magnification \: = \: \dfrac{v}{u}}}}}

\: \: \: \: \: \: \: \:{\large{\bold{\sf{\underbrace{\underline{Full \; Solution}}}}}}

\rule{150}{1}

~ Finding the distance of the image

{\sf{\bold{\leadsto Len's \: formula \: = \: \dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}}}}

{\sf{\bold{\leadsto \dfrac{1}{v} = \dfrac{-1}{f} + \dfrac{1}{u}}}}

{\sf{\bold{\leadsto \dfrac{1}{v} - \dfrac{-1}{10} = \dfrac{1}{-5}}}}

{\sf{\bold{\leadsto \dfrac{1}{v} = -1-2/10}}}

{\sf{\bold{\leadsto \dfrac{1}{v} = -3/10}}}

{\sf{\bold{\leadsto v = \dfrac{-10}{3}}}}

{\sf{\bold{\leadsto v = -33.3 cm}}}

Image position is never negative henceforth,

{\sf{\bold{\leadsto v = 33.3 cm}}}

{\pink{\frak{33.3 \: cm \: is \: position \: of \: image}}}

\rule{150}{1}

~ Finding nature of the image,

{\sf{\bold{\leadsto m = \dfrac{v}{u}}}}

{\leadsto} m = -10/3/-5

{\leadsto} m = ±2/3

{\leadsto} This mean the nature of image is erect and virtual

{\pink{\frak{Image \: is \: Erect \: and \: Virtual}}}

\: \: \: \: \: \: \: \:{\large{\bold{\sf{\underbrace{\underline{Additional \: knowledge}}}}}}

Ray diagram convex mirror.

\setlength{\unitlength}{0.7 cm}\begin{picture}(0,0)\thicklines\put(0,0){\line(1,0){12}}\qbezier(10.49,0)(10.5,1.8)(8.5,3.8)\qbezier(10.49,0)(10.5,-1.8)(8.5,-3.8)\put(7,0){\circle*{0.2}}\put(4,0){\circle*{0.2}}\put(2,0){\vector(0,1){1.5}}\linethickness{0.1mm}\put(2,1.5){\line(1,0){8.2}}\qbezier(10.2,1.5)(7,0)(3.8,-1.5)\put(2,1.5){\line(4,-3){6.77}}\thicklines\put(5.17,0){\vector(0,-1){0.85}}\put(6,1.496){\vector(1,0){0}}\put(6.3,1.496){\vector(1,0){0}}\put(4.2,-1.33){\vector(-3,-2){0}}\put(8,-2.96){\vector(3,-2){0}}\put(7.5,-2.64){\vector(-3,2){0}}\put(1.9,-0.5){\sf B}\put(1.9,1.7){\sf A}\put(3.7,-0.5){\sf C}\put(7.2,-0.5){\sf F}\put(5,-1.4){\sf A'}\put(5,0.2){\sf B'}\put(10.7,0.2){\sf P}\put(10.35,1.45){\sf D}\put(9,-4){\sf E}\end{picture}

Image formation in Concave mirror.

\begin{gathered}\boxed{\begin{array}{cccc}\sf \pink{Position_{\:(object)}} &\sf \purple{Position_{\:(image)}} &\sf \red{Size_{\:(image)}} &\sf \blue{Nature_{\:(image)}}\\\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}&\frac{\qquad \qquad \qquad \qquad\qquad}{}\\\sf At \:Infinity &\sf At\: F&\sf Highly\:Diminished&\sf Real\:and\:Inverted\\\\\sf Beyond\:C &\sf Between\:F\:and\:C&\sf Diminished&\sf Real\:and\:Inverted\\\\\sf At\:C &\sf At\:C&\sf Same\:Size&\sf Real\:and\:Inverted\\\\\sf Between\:C\:and\:F&\sf Beyond\:C&\sf Enlarged&\sf Real\:and\;Inverted\\\\\sf At\:F&\sf At\:Infinity&\sf Highly\: Enlarged&\sf Real\:and\:Inverted\\\\\sf Between\:F\:and\:P&\sf Behind\:the\:mirror&\sf Enlarged&\sf Erect\:and\:Virtual\end{array}}\end{gathered}

Attachments:
Similar questions