Physics, asked by chandru12naik, 2 months ago

an object is projected with velocity of 60m/s in a direction making an angle of 60° with the horizontal find the maximum height, the time taken to reach maximum height, the horizontal range​

Answers

Answered by Anonymous
14

Answer:

  • Velocity (u) = 60 m/s
  • Angle of projection = 60°
  • Maximum height 'H' = ?
  • Time taken to reach maximum height i.e time of ascent 'T' = ?
  • Horizontal Range 'R' = ?

Maximum Height :

\longrightarrow\red{\rm Height_{(maximum)} = \dfrac{u^2 \sin^2(\theta)}{2g}} \\

\longrightarrow\red{\rm Height_{(maximum)} = \dfrac{(60)^2 \sin^2( {60}^{ \circ} )}{2 \times 10}} \\

\longrightarrow\red{\rm Height_{(maximum)} = \dfrac{3600 \times   \bigg(\frac{ \sqrt{3} }{2} \bigg)^{2} }{20}} \\

\longrightarrow\red{\rm Height_{(maximum)} = \dfrac{360 \times \frac{3}{4} }{2}} \\

\longrightarrow\red{\rm Height_{(maximum)} = \dfrac{\frac{1080}{4} }{2}} \\

\longrightarrow\red{\rm Height_{(maximum)} = \dfrac{270}{2}} \\

\longrightarrow \underline{ \underline{\red{\rm Height_{(maximum)} = 135 \: m} }}\\

Time taken to reach maximum height i.e time of ascent :

\longrightarrow\green{\rm Time_{(ascent)} = \dfrac{u \sin (\theta)}{g}} \\

\longrightarrow\green{\rm Time_{(ascent)} = \dfrac{60 \sin ( {60}^{ \circ} )}{10}} \\

\longrightarrow\green{\rm Time_{(ascent)} = \dfrac{60 \times  \frac{ \sqrt{3} }{2} }{10}} \\

\longrightarrow\green{\rm Time_{(ascent)} = \dfrac{6  \sqrt{3} }{2} } \\

\longrightarrow\green{\rm Time_{(ascent)} =3 \sqrt{3} }\\

\longrightarrow\green{\rm Time_{(ascent)} =3 \times 1.73}\\

\longrightarrow \underline{ \underline{\green{\rm Time_{(ascent)} =5.19 \: s}}}\\

Horizontal Range :

\longrightarrow\pink{\rm Range_{(Horizontal)} = \dfrac{u^2 \sin2(\theta)}{g}}\\

\longrightarrow\pink{\rm Range_{(Horizontal)} = \dfrac{(60)^2 \sin2( {60}^{ \circ} )}{10}}\\

\longrightarrow\pink{\rm Range_{(Horizontal)} = \dfrac{3600 \sin( {120}^{ \circ} )}{10}}\\

\longrightarrow\pink{\rm Range_{(Horizontal)} = 360 \sin( {120}^{ \circ} )}\\

\longrightarrow\pink{\rm Range_{(Horizontal)} = 360  \times   \dfrac{ \sqrt{3} }{2} }\\

\longrightarrow\pink{\rm Range_{(Horizontal)} = 180 \times    \sqrt{3}  }\\

\longrightarrow\pink{\rm Range_{(Horizontal)} = 180 \times 1.73  }\\

\longrightarrow \underline{ \underline{\pink{\rm Range_{(Horizontal)} = 311.4 \: m  }}}\\

Similar questions