Math, asked by subhamn029, 3 months ago

An object is sold at a profit of 10%<. what is the ratio of it's cost price to sale price​

Answers

Answered by SachinGupta01
1

 \bf \: \underline{Given} :

 \sf \: An  \: object \:  is \:  sold  \: at  \: a \: gain  \: of  \: 10  \: \%

 \bf \:  \underline{To \:  find }:

 \sf \: We  \: have  \: to \:  find \:  the  \: ratio \:  of  \: it's  \: C.P\:  to \:  S.P

 \sf \:  \underline{ \underline{Solution}}

 \sf \: Let  \: the  \: cost \:  price \:  be  \: z.

 \:  \boxed{ \red{ \sf \: Profit = 10  \: \% \:  of \:  CP}}

\implies \:  \sf \: Profit = 10  \: \% \:  of \:  z

\implies \: \sf \: Profit =  z \times  \dfrac{10}{100}

\implies \: \sf \: Profit =  z \times  \dfrac{1\!\!\!\not0}{10\!\!\!\not0}

\implies \: \sf \: Profit = Rs.  \:    \dfrac{z}{10}

\: \boxed{ \red{ \sf S.P = Cost \:  price + Profit} }

\implies \: \sf \: S.P = z \:  +  \: \dfrac{z}{10}

\implies \:\sf \: S.P =  \dfrac{10z  +  z}{10}

\implies \: \sf \: S.P = Rs.  \:  \dfrac{11z }{10}

 \sf \:  \underline{Now,  \: Ratio  \: of \:  C.P \:  to  \: S.P \:  is} :

 \sf \: \longmapsto \: \boxed{ \red{ \sf \dfrac{Cost \:  price }{ Selling \:  price}} }

 \sf \: Putting \:  the  \: values,

 \sf \:   \implies \: \dfrac{z}{ \dfrac{11z }{10}}

 \sf \:   \implies \: z  \:  \div  \: \dfrac{11z }{10}

 \sf \:   \implies \: z  \:  \div  \: \dfrac{10 }{11z}

 \sf \:   \implies \: \!\!\!\not{z } \:  \div  \: \dfrac{10 }{11\!\!\!\not{z}}

 \sf \:   \implies  \dfrac{10}{11}

 \underline{ \boxed{  \pink{\sf \: Hence, \:  the \:  ratio  \: of\: it's  \: C.P \:  to  \: S.P  \: is  \: 10 : 11}}}

Similar questions