Physics, asked by sanjulic2151, 10 months ago

An object moving with a speed of 20km/h accelerates with 4km/h^2 and comes in rest. What distance it has covered.

Answers

Answered by BrainlyConqueror0901
12

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Distance\:travelled=50\:km}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}}   \\  \tt:  \implies Initial \: speed(u)= 20 \: kmh \\  \\ \tt:  \implies Acceleration(a) = -  4 \: km {h}^{2}  \\  \\ \red{\underline \bold{To \: Find :}}   \\  \tt:  \implies Distance \: covered(s) = ?

• According to given question :

 \tt \circ \: Final \: speed  = 0 \: kmh \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  {v}^{2}  =  {u }^{2}  + 2as \\  \\ \tt:  \implies  {0}^{2}  =  {20}^{2}  + 2 \times ( - 4) \times s \\  \\ \tt:  \implies 0 = 400 - 8 \times s \\  \\ \tt:  \implies  - 400 =  - 8 \times s \\  \\ \tt:  \implies s =  \frac{ - 400}{ - 8}  \\  \\ \green{\tt:  \implies s = 50 \: km} \\  \\  \bold{Alternate \: method} \\  \tt:  \implies v = u + at \\  \\  \tt:  \implies 0 = 20 + ( - 4) \times t \\  \\  \tt:  \implies  - 20 =  - 4 \times t \\  \\   \green{\tt:  \implies t = 5 \: h} \\  \\  \bold{As \: we \: know \: that} \\   \tt:  \implies s = ut +  \frac{1}{2}  {at}^{2}  \\  \\  \tt:  \implies s = 20 \times 5 +  \frac{1}{2}  \times ( - 4) \times  {5}^{2}  \\  \\  \tt:  \implies s = 100 - 50 \\  \\   \green{\tt:  \implies s = 50 \: km}

Answered by Saby123
11

 \tt{\huge{\pink{Hello!!! }}}

Correct Question :

An object moving with a speed of 20km/h accelerates with - 4km/h^2 and comes in rest. What distance it has covered.

Solution :

 \tt{\orange {Step-By-Step-Explaination \::- }}

 \tt{\purple {\leadsto {Formulae \: Used \: - }}}

 \tt{ \red{ \mapsto{ {v}^{2}  \:  =  {u}^{2}  \: +  2as  }}}

Given Values :

  • V = 0 m/s.

  • U = 20 km/hr.

  • A = -4 m/s^2

Substituting and Solving,

 \tt{ \blue{ \mapsto{ {0}^{2}  \:  =  {20}^{2}  \:  - 8s  }}} \\  \\  = s = 50 \: m.

 \tt{ \red{ \mapsto{ {v}^{2}  \:  =  {u}^{2}  \: +  2as  }}}

Additional Formulae :

 \tt{ \red{ \mapsto{s \:  = ut \: +  \dfrac{1}{2}a {t}^{2}  }}}

 \tt{ \red{ \mapsto{ {v}^{2}  \:  =  {u}^{2}  \: +  2as  }}}

 \tt{ \red{ \mapsto{ v  \:  =  u \: +  at  }}}

Similar questions