Physics, asked by mubashirk4140, 9 months ago

An object of 2cms height is placed at 30cms infront of a convex mirror of focal length 15 cm.Then find Image distance and height of the image

Answers

Answered by Anonymous
12

Given :

  • Height of the object ( \sf{h_{o}} ) = 2cm
  • Object distance ( \sf{u} ) = 30cm
  • Focal length of the mirror ( \sf{f} ) = 15cm

To Find :

  • Image distance ( \sf{v} )
  • Height of the image ( \sf{h_{i}} )

By Applying New Cartesian Sign Conventions, we have

  • ( \sf{h_{o}} ) = 2cm
  • ( \sf{u} ) = - 30cm
  • ( \sf{f} ) = 15cm

Image distance ( \sf{v} ) = ?

From mirror formula :

 \underline{\boxed{ \bf{ \dfrac{1}{f}  =  \dfrac{1}{v} +  \dfrac{1}{u}  }}}

\sf{ \dfrac{1}{15}  =  \dfrac{1}{v} +  \dfrac{1}{ - 30}  }

\sf{ \dfrac{1}{15}  +  \dfrac{1}{30} =  \dfrac{1}{ v}  }

\sf{ \dfrac{2 + 1}{30}=  \dfrac{1}{ v}  }

\sf{\cancel{ \dfrac{3}{30}}=  \dfrac{1}{ v}  }

\sf{\dfrac{1}{10}=  \dfrac{1}{ v}  }

\sf{v = 10}

  • Hence, the image distance is 10 cm.

Height of the image ( \sf{h_{i}} ) = ?

From magnification formula :

 \underline{\boxed{ \bf{ \dfrac{h_{i}}{h_{o}}  = - \dfrac{v}{u}  }}}

\sf{ \dfrac{h_{i}}{2}  =  \cancel{-} \dfrac{10}{  \cancel{-} \:  30}  }

\sf{ \dfrac{h_{i}}{2}  =  \dfrac{10}{30}  }

\sf{30 \: h_{i} = 2 \times 10}

\sf{\: h_{i} =  \dfrac{20}{30}}

\sf{\: h_{i} =  \dfrac{2}{3} }

  • Hence, the height of the image is 2/3 cm.
Similar questions