Science, asked by rajrajan1974, 4 months ago

An object of 5cm height is place at the distance of 10cm from a convex mirror of radios of 30cm find the nature and position and they size of the height of image

Answers

Answered by SachinGupta01
20

 \bf \:  \underline{Given} :

 \sf \: \implies \:  h_o  = 5 \: cm

 \sf \:\implies \: u =  - 10 \: cm

 \sf \:\implies \: R = 30  \: cm

 \sf \: We  \: know \:  that,

 \sf \:\implies \: f =  \dfrac{R }{2}

\sf  \: \implies \:f \:  =  \dfrac{30}{2}

 \sf \: So, focal \:  length \:  (f) = 15  \: cm

 \bf \:  \underline{To \:  find} :

We need to find image distance (v), magnification (m) and height of image

\: \red{  \implies  \boxed{\sf   \:  \dfrac{1}{v}  +   \dfrac{1}{u}   =  \dfrac{1}{f} }}

\sf  \: \implies  \:  \dfrac{1}{v}  =   \dfrac{1}{f}   -  \dfrac{1}{u}

\sf  \: \implies  \:  \dfrac{1}{v}  =   \dfrac{1}{15}   -  \dfrac{1}{ - 10}

\sf  \: \implies  \:  \dfrac{1}{v}  =   \dfrac{1}{15}    +  \dfrac{1}{10}

\sf  \: \implies  \:  \dfrac{1}{v}  =   \dfrac{2 + 3}{30}

\sf  \: \implies  \:  \dfrac{1}{v}  =   \dfrac{5}{30}

\sf  \: \implies  \:  \dfrac{1}{v}  =   \dfrac{\!\!\!\not5}{\!\!\!\not3\!\!\!\not0}    =  \dfrac{1}{6}

\sf  \: \implies  \:  Image \:  distance \:  from \:  mirror\: (v ) =   + 6 \: cm

The image is formed behind the image at the distance of 6 cm, hence image is vertual.

 \red{\implies  \boxed{\sf  \: m  =  \dfrac{ - v}{u} }}

\sf  \: \implies m  =  \dfrac{ - 6}{-10}

\sf  \: \implies \:M agnification \: ( m)  = 0.6

\red{\implies \boxed{ \sf  \:  m  = \dfrac{h_i }{h_o} }}

\sf  \: \implies  \dfrac{6}{10}  \times 5 = h_i

 \sf  \implies \:  \:  \: Height \:  of \:  object \:  (h_i )=  + 3 \:  cm

The height of the image is 3 cm and the positive sign indicates that the image is erect.

________________________________

 \sf \: h_o  = Height \:  of  \: object

 \sf \: h_i  = Height \:  of  \: image

 \sf \: u = Object  \: distance \:  from  \: mirror

 \sf \: v = image \:  distance \:  from \:  mirror

 \sf \: R = Radius  \: of  \: curvature

 \sf \: f = focal  \: length  \: of \:  mirror

Similar questions