Physics, asked by palarkasmita, 4 months ago

an object of 5cm is placed at a distance of 16cm from a convex lense of focal length 10cm .find the nature losition and size of the image

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
17

Given

  • Object Distance = -16 cm
  • Object Size = 5 cm
  • Lens Used = Convex
  • Focal length = 10 cm

To Find

  • Nature, Position and size of the image

Solution

● Lens Formula ; 1/v - 1/u = 1/f

Magnification = hᵢ/hₒ = -v/u

Image Distance :

→ 1/v + 1/u = 1/f

→ 1/v + 1/-16 = 1/10

→ 1/v - 1/16 = 1/10

→ 1/v = 1/10 + 1/16

→ 1/v = 8/80 + 5/80

→ 1/v = (8+5)/80

→ 1/v = 13/80

→ v = 80/13

→ v = 6.1 cm

Magnification :

→ M = -v/u

→ M = -6.1/-16

→ M = 0.3

Image Size :

→ hᵢ/hₒ = -v/u

→ hᵢ = 0.3 × 5

→ hᵢ = 1.5 cm

∴ The image is virtual, erect and diminished with a size of 1.5 cm placed at 6.1 cm

Answered by AestheticSoul
18

Given

  • Height of object (\sf{h_o}) = 5 cm
  • Object distance (u) = - 16 cm
  • Focal length (f) = 10 cm

To find

  • Nature, position and size of the image.

Solution

Distance of image from pole (v) -

\underline{\boxed{\sf{\dfrac{1}{v} + \dfrac{1}{u} = \dfrac{1}{f}}}}

 \implies\sf{ \dfrac{1}{v} +   \bigg( - \dfrac{1}{16} \bigg)  =  \dfrac{1}{10}   }

 \implies\sf{ \dfrac{1}{v} - \dfrac{1}{16}  =  \dfrac{1}{10}   }

 \implies\sf{ \dfrac{1}{v}   =  \dfrac{1}{10} + \dfrac{1}{16}   }

 \implies\sf{ \dfrac{1}{v}   =  \dfrac{8 + 5}{80}}

 \implies\sf{ \dfrac{1}{v}   =  \dfrac{13}{80}}

 \implies\sf{ v  =  \dfrac{80}{13}}

 \implies\sf{ v  = \cancel{\dfrac{80}{13}}}

\implies\sf{v = 6.1}

\red{\bigstar}\underline{\boxed{\sf{v = 6.1~cm}}}

Magnification -

\underline{\boxed{\sf{m = \dfrac{-v}{u}}}}

 \implies \sf{ \dfrac{ - 80}{13 \times  - 16}}

 \implies \sf{ \dfrac{ 80}{13 \times 16}}

 \implies \sf{m = 0.3}

\red{\bigstar}\underline{\boxed{\sf{m = 0.3}}}

Height of image -

\underline{\boxed{\sf{\dfrac{h_i}{h_o} = \dfrac{-v}{u}}}}

 \implies \sf{\dfrac{h_i}{5} = 0.3}

 \implies \sf{h_i = 0.3 \times 5}

 \implies \sf{h_i = 1.5~cm}

\red{\bigstar} \underline{\boxed{\sf{h_i = 1.5~cm}}}

•°• Image is virtual, erect and diminished.

Similar questions