Science, asked by Madhumita467, 3 months ago

An object of height 3 cm is placed at a distance of 10cm from a convex mirror of focal length 15 cm . Find the position, size and nature of the image.

Answers

Answered by SachinGupta01
14

\bf \: \underline{Given} :

\sf  \implies \: h_o = 3 \: cm

\sf \implies \: u = - 10 \: cm

\sf \implies \: f = 15 \: cm

\bf \: \underline{To \: find } :

\sf\implies Position, size  \: and  \: nature  \: of  \: the \:  image.

\bf \underline{ \underline{Solution }}

\implies \boxed{ \pink{\sf\dfrac{1}{f} = \: \dfrac{1}{v} + \dfrac{1}{u} }}

\implies \sf \dfrac{1}{v} =\: \dfrac{1}{f} - \dfrac{1}{u}

\implies \sf \dfrac{1}{v} =\: \dfrac{1}{15} - \dfrac{1}{ - 10}

\implies \sf \dfrac{1}{v} =\: \dfrac{1}{15}  +  \dfrac{1}{ 10}

\implies \sf \dfrac{1}{v} =\: \dfrac{2}{30}  +  \dfrac{3}{30}

\implies \sf \dfrac{1}{v} =\: \dfrac{2 + 3}{30}

\implies \sf \dfrac{1}{v} =\: \dfrac{ 5}{30}

\implies \sf \dfrac{1}{v} =\: \dfrac{1}{6}

\implies \sf v = 6

Image distance = 6 cm

 \bf Now,

 \sf Finding  \: the \:  height \:  of  \: the  \: image,

\implies \boxed{ \pink{\sf \: m = \dfrac{ - v}{u} }}

\implies \sf \: m = \dfrac{ - 16}{ - 10}

\implies \sf \: m = \dfrac{3}{5}

\implies \sf \: m =0.6

So, the magnification (m) is 0.6

\implies \boxed{ \pink{\sf \: m = \dfrac{h_i}{h_o} }}

\implies \sf \: 0.6 = \dfrac{h_i}{3}

\implies \sf h_i = 0.6\times 3

\red{\implies \sf h_i =1.8 \: cm}

Hence, the height of the image is 1.8 cm and the image formed is erect and virtual.

________________________________

 \sf \: h_o = Height \: of \: object

\sf \: h_i = Height \: of \: image

\sf \: u = Object \: distance \: from \: mirror

\sf \: v = image \: distance \: from \: mirror

\sf \: f = focal \: length \: of \: mirror

Answered by MuskanJoshi14
3

Explanation:

\bf \: \underline{Given} :

\sf  \implies \: h_o = 3 \: cm

\sf \implies \: u = - 10 \: cm

\sf \implies \: f = 15 \: cm

\bf \: \underline{To \: find } :

\sf\implies Position, size  \: and  \: nature  \: of  \: the \:  image.

\bf \underline{ \underline{Solution }}

\implies \boxed{ \pink{\sf\dfrac{1}{f} = \: \dfrac{1}{v} + \dfrac{1}{u} }}

\implies \sf \dfrac{1}{v} =\: \dfrac{1}{f} - \dfrac{1}{u}

\implies \sf \dfrac{1}{v} =\: \dfrac{1}{15} - \dfrac{1}{ - 10}

\implies \sf \dfrac{1}{v} =\: \dfrac{1}{15}  +  \dfrac{1}{ 10}

\implies \sf \dfrac{1}{v} =\: \dfrac{2}{30}  +  \dfrac{3}{30}

\implies \sf \dfrac{1}{v} =\: \dfrac{2 + 3}{30}

\implies \sf \dfrac{1}{v} =\: \dfrac{ 5}{30}

\implies \sf \dfrac{1}{v} =\: \dfrac{1}{6}

\implies \sf v = 6

Image distance = 6 cm

 \bf Now,

 \sf Finding  \: the \:  height \:  of  \: the  \: image,

\implies \boxed{ \pink{\sf \: m = \dfrac{ - v}{u} }}

\implies \sf \: m = \dfrac{ - 16}{ - 10}

\implies \sf \: m = \dfrac{3}{5}

\implies \sf \: m =0.6

So, the magnification (m) is 0.6

\implies \boxed{ \pink{\sf \: m = \dfrac{h_i}{h_o} }}

\implies \sf \: 0.6 = \dfrac{h_i}{3}

\implies \sf h_i = 0.6\times 3

\red{\implies \sf h_i =1.8 \: cm}

Hence, the height of the image is 1.8 cm and the image formed is erect and virtual.

________________________________

 \sf \: h_o = Height \: of \: object

\sf \: h_i = Height \: of \: image

\sf \: u = Object \: distance \: from \: mirror

\sf \: v = image \: distance \: from \: mirror

\sf \: f = focal \: length \: of \: mirror

Similar questions