Physics, asked by Anonymous, 1 month ago

An object of height 4.0 cm is placed at a distance 24 cm in front of a convex lens of focal length 8 cm.
★ Find the position and size of image. ​

Answers

Answered by ahmedraza637353
0

Answer:

height of object =ho=4cm

distance of object = p=24cm

Focal lenght =f= 8cm

find

position of image = q =?

size of image = hi= ?

formula

1/q= 1/f-1/p

1/q=1/-8-1/24

1/q=-0.125-0.0416

1/q=-0.16666

q=-6.0024cm

formula

hi/ho=q/p

hi=-6.0024/24×4

hi=-1.000400cm

Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
16

\underline{ \large{ \sf{Information  \: given  \: to  \: us:-}}}

Height of object = 4.0 cm

Distance = 24 cm

Focal length = 8 cm

\underline{ \large{ \sf{Need \: to \: calculate:-}}}

Position of image

Size of image

\underline{ \large{ \sf{Calculations:-}}}

Now,

Lens formula:-

{\large: \longmapsto} \:   \:   \red{\boxed{\mathrm{  \dfrac{1}{v}  -  \dfrac{1}{u}  =  \frac{1}{f} }}}

Where,

{ \large: \longmapsto} \:  \mathrm{height \: is \: o}

{ \large: \longmapsto} \:   \: \mathrm{u \: is \: the \: distance \: of \: object}

{\large: \longmapsto} \:   \: \mathrm{focal \: length \: is \: f}

By changing sides in formula,

{\large: \longmapsto} \:   \:   {\boxed{\mathrm{  \dfrac{1}{v}   \: = \:   \dfrac{1}{u}  \:  +  \:  \dfrac{1}{f} }}}

Substituting values,

{\large: \longmapsto} \:   \:   {\mathrm{  \dfrac{1}{v}   \: = \:   \dfrac{1}{12} }}

Again,

Using relationship,

{\large: \longmapsto} \:   \:   \red{\boxed{\mathrm{   \frac{ I}{O}   \: = \:  \frac{v}{u}  }}}

Where,

: \large{ \longmapsto} \: \mathrm{I \:  = \: image }

: \large{ \longmapsto} \: \mathrm{v\:  =  \: distance \: of \: image }

: \large{ \longmapsto} \: \mathrm{u\:  =  \: distance \: of \: object }

Substituting values,

{\large: \longmapsto} \:   \:   {{\mathrm{  \dfrac{I}{4.0}   \: = \:   \dfrac{1}{u}  \:  +  \:  \dfrac{12}{ - 24} }}}

Cross multiplying,

{\large: \longmapsto} \:   \:   {{\mathrm{ I \: = \:  -  \:  \dfrac {12}{  24}  \:  \times  \: 4}}}

We get,

{\large: \longmapsto} \:   \:   {{\mathrm{ I \: = \:  -  \:  \dfrac {12}{   \cancel{24}}  \:  \times  \:  \cancel{4}}}}

{\large: \longmapsto} \:   \:    \boxed{{\mathrm{I \: = \:    \: - 2cm  }}}

\underline{ \large{ \sf{Conclusion:-}}}

: \large{ \longmapsto} \: \mathrm{Position \: of \: image \: is 12 cm }

: \large{ \longmapsto} \: \mathrm{Size of image is  -2 cm}

Similar questions