Physics, asked by mkhalilibr06, 23 hours ago

An object of height 5cm is placed perpendicular to the principal axis of a concave lens of

focal length 10cm. if the distance of the object from the optical centre of the lens is 20cm;

determine the position, nature and size of the image.

Answers

Answered by MystícPhoeníx
205

According to the Question

It is given that

  • Object of height ,ho = 5cm
  • Focal length ,f = -10cm.
  • Object distance ,u = -20cm

we have to calculate the the position, nature and size of the image. Firstly we calculate the image distance .

By using Lens Formula.

  • 1/f = 1/v - 1/u

by putting the value we get

↠ 1/v = 1/f + 1/u

↠ 1/v = 1/-10 + 1/-20

↠ 1/v = -1/10 - 1/20

↠ 1/v = -1 +(-2)/20

↠ 1/v = -1-2/20

↠ 1/v = -3/20

↠ v = -20/3

↠ v = -6.67 cm

  • Hence, the image distance is 6.67cm from the object and the image is formed in front of mirror.

Now,

Calculating magnification

  • m = hi/ho = v/u

by putting the value we get

↠ hi/5 = -6.67/(-20)

↠ hi = -6.67×5/(-20)

↠ hi = 33.35/20

↠ hi = 1.66 cm

  • Hence, the height of image is 1.66 cm .
  • The image formed is smaller than the object and erect .


rsagnik437: Great ! :)
MystícPhoeníx: Thank You :)
Answered by Anonymous
198

\large\underline{\underline{\maltese{\color{darkblue}{\pmb{\sf{\:  Given :-}}}}}}

➬ An object of height (h1)

  • = 5 cm

➬ Focal length of concave lense = -10 cm

➬ Object Distance (u)

  • = -20 cm

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\pink{\pmb{\sf{\: To \:  Find  :-}}}}}}

Image Distance (v) =?

➬Nature of Image = ?

Image Height (h2)= ?

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\orange{\pmb{\sf{\: Solution  :-}}}}}}

❒ Formula Used :

➢According to lens Formula

\large{\blue{\bigstar}}{\underline{\boxed{\red{\sf{  \frac{1}{v}  - \frac{1}{u} =  \frac{1}{f}  }}}}}

➳ Place the given value in this formula

\large{\blue{\bigstar}}{\underline{\boxed{\pink{\sf{  \frac{1}{v}  - \frac{1}{ - 20} =  \frac{1}{ - 10}  }}}}}

\large{\blue{\bigstar}}{\underline{\boxed{\blue{\sf{  \frac{1}{v}   +  \frac{1}{ 20} =  \frac{ - 1}{ 10}  }}}}}

\large{\blue{\bigstar}}{\underline{\boxed{\green{\sf{  \frac{1}{v}    =   \frac{ - 1}{10}  -  \frac{ 1}{ 20}  =  \frac{ - 2 - 1}{20}  =  \frac{ - 3}{20}  }}}}}

\large{\blue{\bigstar}}{\underline{\boxed{\purple{\sf{v =  \frac{ - 20}{3}   =  - 6.67 }}}}}

\large\qquad{\color{maroon}{:\longmapsto{\underline{\boxed{\sf{Image  \:  \: Distance = -6.67 \: cm}}}}}}{\pink{\bigstar}}

\qquad{━━━━━━━━━━━━━━━}

❒ Note :

  • The image to be formed on same side of object is virtual and negative sign (-) for image Distance (v) indicate that image is formed on left side of concave lens .
  • The image is diminished because

{:\longmapsto{\sf{ |v|  <  |u| }}}

❒ Now, Formula Used :

➢According to magnification Formula :

\large\qquad{\color{green}{:\longmapsto{\underline{\boxed{\sf{Magnification }}}}}}{\pink{\bigstar}}

\large{\blue{\bigstar}}{\underline{\boxed{\red{\sf{m =  \frac{v}{u} ,m =  \frac{h1}{h2}  }}}}}

\large{\blue{\bigstar}}{\underline{\boxed{\pink{\sf{ \implies\ \ \frac{ \frac{ - 20}{3} }{ - 20 } =  \frac{h1}{5} }}}}}

\large{\blue{\bigstar}}{\underline{\boxed{\purple{\sf{h1 =  \frac{5}{3} }}}}}

\large\qquad{\color{maroon}{:\longmapsto{\underline{\boxed{\sf{Image  \:  \: Size  = +1.66 \: cm}}}}}}{\pink{\bigstar}}

❒ Note :

  • The postive sign (+) of Magnification h2 indicate that the image to be formed on same side of object is erect and virtual
  • The image is diminished because

{:\longmapsto{\sf{ h2  <  h1 }}}

❒ Therefore :

❝ The image formed is 6.66 cm away from the lens on same side of object

\qquad{━━━━━━━━━━━━━━━}

{\blue{\underline{▬▬▬▬▬}}{\pink{\underline{▬▬▬▬▬}}{\orange{\underline{▬▬▬▬▬}}{\purple{\underline{▬▬▬▬▬▬}}}}}}

Similar questions