Social Sciences, asked by ranu167171, 10 months ago

An object of height 6 cm is placed perpendicular to the princapal axis of a concave lens of focal length 5cm. Use the lens formula to determine the Position, size and nature of the image if the distance from the lens is 10cm.​

Answers

Answered by Anonymous
27

\large{\red{\bold{\underline{Given:}}}}

(i) f (Focal Length) = -5cm

(ii) u (Object Distance) = -10cm

(iii) h (Object height) = 6cm

\large{\green{\bold{\underline{To \: Calculate:}}}}

(i) v (image distance) = ????

(ii) h' (Size of the image) = ???

\large{\blue{\bold{\underline{Formula \: Used:}}}}

  \sf \: \frac{1}{f}  =  \frac{1}{v} -  \frac{1}{u}

\large{\red{\bold{\underline{Calculation:}}}}

\rightarrow \sf \:  \frac{1}{v}  =  \frac{1}{f}  +  \frac{1}{u} \\  \\ \rightarrow \sf \:  \frac{1}{v} =  -  \frac{1}{5}  +  ( -  \frac{1}{10} ) \\  \\ \rightarrow \sf \:  \frac{1}{v} =  -  \frac{1}{5}  -  \frac{1}{10}  \\  \\ \rightarrow \sf \:  \frac{1}{v} =  \frac{ - 1 \times 2 - 1}{10}  \\  \\ \rightarrow \sf \:  \frac{1}{v} =  \frac{ - 3}{10} \\  \\ \rightarrow \sf \: v =  - 3.33cm

\large{\pink{\bold{\underline{Now:}}}}

As per our information

 \sf \:  \frac{Size \: of \: the \: Image}{Size \: of \: the \: object}  =  +  \frac{v}{u}

\large{\green{\bold{\underline{On \: putting \: all \: the \: values:}}}}

\rightarrow \:  \sf \: \frac{h'}{h} =  \frac{ - 3.3}{ - 10}  \\  \\ \rightarrow \:  \sf \: \frac{h'}{6} = \frac{  \cancel- 3.3}{  \cancel- 10} \\  \\ \rightarrow \:  \sf \: \frac{h'}{6} = \frac{3.3}{10} \\  \\ \rightarrow \:  \sf \: h' =  \frac{6 \times 3.3}{10} \\ \\ \rightarrow \:  \sf \: h' =  \frac{19.8}{10} \\  \\ \rightarrow \:  \sf \: h' = 1.98

\large{\pink{\bold{\underline{Hence:}}}}

Size of the image is 1.98cm.

\large{\orange{\bold{\underline{Related \: Information:}}}}

\rightarrow \: \sf \: Always \: virtual \: image \: will \: be \:formed \: by \\ \sf \: concave \: lens. \\  \\ \rightarrow \: \sf \: Image \: will \: be \: erect. \\  \\ \rightarrow \: \sf \: Image \: will \: be \: formed \: always \: on \: the \: same \\ \sf \: side \: of \: the \: object.

Answered by princess171881
0

Explanation:

1.98cm is the correct answer

Similar questions