Physics, asked by anoymous77, 7 months ago

An object of mass 2kg is released at origin of x-y plane, where its potential energy changes as 
U = (2x – 4y) joules. Find speed of object after 3 sec of release. (use
sqrt 5  = 2.24

Answers

Answered by nirman95
3

Given:

An object of mass 2kg is released at origin of x-y plane, where its potential energy changes as U = (2x – 4y) joules.

To find:

Speed of object after 3 seconds of release.

Calculation:

First of all, let's find out the force in the X and Y direction:

 \therefore \: F_{x} =  -  \dfrac{ \partial U}{ \partial x}

 \implies\: F_{x} =  -  \dfrac{ \partial (2x - 4y)}{ \partial x}

 \implies\: F_{x} =  - 2 \: N

 \implies\: a_{x} =  -  \dfrac{2}{2}  = 1 \: m {s}^{ - 2}

--------------------------------------------------------------

 \therefore \: F_{y} =  -  \dfrac{ \partial U}{ \partial y}

 \implies\: F_{y} =  -  \dfrac{ \partial (2x - 4y)}{ \partial y}

 \implies\: F_{y} = 4 \: N

 \implies\: a_{y} =  \dfrac{4}{2}  = 2 \: m {s}^{ - 2}

---------------------------------------------------------------

So, X axis velocity of object after 3 seconds.

 \therefore \: v_{x} = 0 +  a_{x}t

 \implies \: v_{x} = ( - 2) \times 3

 \implies \: v_{x} =  - 6 \: m {s}^{ - 1}

So , Y axis velocity of object after 3 seconds.

 \therefore \: v_{y} = 0 +  a_{y}t

 \implies \: v_{y} = ( 4) \times 3

 \implies \: v_{y} = 12 \: m {s}^{ - 1}

So, net velocity will be:

 \therefore \: v_{net} =  \sqrt{ {(v_{x})}^{2}  +  {(v_{y})}^{2} }

 \implies \: v_{net} =  \sqrt{ {( - 6)}^{2}  +  {(12)}^{2} }

 \implies \: v_{net} =  \sqrt{ 36+  144}

 \implies \: v_{net} =  \sqrt{180}

 \implies \: v_{net} =  \sqrt{5 \times 36}

 \implies \: v_{net} =  6\sqrt{5}

 \implies \: v_{net} =  6 \times 2.24

 \implies \: v_{net} =  13.44 \: m {s}^{ - 1}

So, net velocity after 3 seconds is 13.44 m/s.

Answered by porwalarugreat
0

Answer:

Ans. 6.72

Explanation:

. U = 2x – 4y

Fx

=

U

2

x

  

. Fy

=

U

4

y

 

F 2i 4j ˆ ˆ   

ˆ ˆ a i 2j   

v u at  

  

  u 0 i 2j 3 ˆ ˆ     

ˆ ˆ v 3i 6j   

u 9 36 3 5 3 2.24      = 6.72

Similar questions