Physics, asked by GodSpeed1212, 1 year ago

An object of mass m and velocity v has kinetic energy 900J. Find the new kinetic energy if the velocity of the object becomes one - third?

Answers

Answered by sankho1
7
Kinetic Energy (KE) = 1/2 mv^2
So..KE varies as v^2
Therefore if velocity becomes 1/3 times.. The KE will become (1/3)^2= 1/9 times i.e. 900J x 1/9 =100J
Answered by BrainlyConqueror0901
12

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{New\:kinetic\:energy=100\:J}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Mass \: of \: object = m \\  \\ \tt: \implies Kinetic \: energy(K.E) = 900 \: joule\\\\ \tt:\implies Velocity\:of\:object\:=v \\  \\ \red{\underline \bold{To \: Find :}} \\ \tt:  \implies New \: kinetic\: energy= ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Kinetic \: energy =  \frac{1}{2} m {v}^{2}  \\  \\ \tt:  \implies 900 =  \frac{1}{2}  \times m  \times  {v}^{2} \\\\ \tt:\implies 1800=mv^{2}-----(1)

 \tt \circ \: Velocity= \frac{v}{3}\: m/s \\  \\  \bold{For \: new \: kinetic \: energy} \\  \tt:  \implies K.E =  \frac{1}{2}  \times m \times  {(\frac{v}{3})}^{2}  \\  \\   \tt:  \implies 18K.E= m {v}^{2}  -  -  -  -  - (2) \\  \\  \text{Putting \: value \: of \: mv}^{2}  \text{ \: in \: (2)}\\\\ \tt:\implies 18K.E=1800 \\  \\  \green{ \tt: \implies K.E = 100 \:J}  \\  \\   \green{\tt  \therefore New \: kinetic \:energy \: is \: 100 \: J}

Similar questions